SingleSite_regression_sampler_parallel | R Documentation |
The model is either:
y_i = X1_base*alpha1 + X1_list_[i]*alpha2 + X2*beta + e, e ~ N(0,1/Y_prec[i]*V)
y_i = X1_base*alpha1 + X1_list_[i]*alpha2 + X2*V_*beta + e, e ~ N(0,1/Y_prec[i]*V)
Where V = RtR
, priors on elements of alpha1, alpha2 and beta are independent.
Each column of Y is considered independent
SingleSite_regression_sampler_parallel(
Y,
X1_base,
X1_list_,
X2_,
Vx_,
h2s_index,
chol_V_list_,
Y_prec,
Y_prec_a0,
Y_prec_b0,
prior_prec_alpha1,
prior_prec_alpha2,
prior_mean_beta,
prior_prec_beta,
current_alpha1s_,
current_alpha2s_,
BayesAlphabet_parms
)
Y |
n x p matrix of observations |
X1_base |
n x a1 matrix of X1 covariates common to all p. Can be NULL |
X1_list_ |
p-list of n x a2 matrices of X1 covariates unique to each p. Can be NULL |
h2s_index |
p-vector of indices for to select appropriate V of each trait |
chol_V_list_ |
list of cholesky decompositions of V: RtR (each nxn). Can be either dense or sparse |
Y_prec |
p-vector of Y current precisions |
Y_prec_a0 , Y_prec_b0 |
scalars giving the shape and rate of the Gamma distribution for the prior on Y_prec |
prior_prec_alpha1 |
a1 x p matrix of prior precisions for alpha1 |
prior_prec_alpha2 |
p-vector of precision of alpha2s for each trait |
prior_mean_beta |
b x p matrix of prior means of beta |
prior_prec_beta |
b x p matrix of prior precisions of beta |
which_sampler |
int:
|
X2 |
either X2, a n x b matrix, or Ux, a n x m matrix. If Ux, then V must be non-NULL |
V_ |
m x b matrix if X2 is Ux, otherwise NULL |
beta1_list_ |
p-list of a2-vectors for X1 coefficients. Can be NULL |
beta2 |
a b x p matrix of current values for beta |
beta2_alpha_ |
b x p matrix for BayesC priors for beta2. Can be NULL |
beta2_delta_ |
b x p matrix for BayesC priors for beta2. Can be NULL, |
beta2_p_i_ |
b x p matrix for BayesC priors for beta2. Can be NULL |
List with elements:
alpha1 a1 x p matrix of alpha1
alpha2 concatenated vector of alpha2 for all traits
beta b x p matrix of beta
Y_prec p x 1 vector of Y_prec
beta2_alpha b x p matrix (optional)
beta2_delta_ b x p matrix (optional)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.