View source: R/parseMinimalData.r
Parse input data to fitBabyMonitor
1 2 3 | parseMinimalData(minimal_data, num_cat, num_cont, subset = FALSE,
outcome_na = "set0", subset_na = "category", cat_na = "category",
cont_na = "median", n_cutoff = 5)
|
minimal_data |
Data_frame with a particular format: 1st column: Outcome vector (0-1 encoding) 2nd column: Institution ID 3rd column: Subset (if subset == TRUE): Next: num_cat columns of categorical variables (num_cat can equal 0) Next: num_cont columns of continuous variables (num_cont can equal 0) |
num_cat |
integer. Number of categorical risk adjusters. |
num_cont |
integer. Number of continious risk adjusters. |
subset |
logical; if TRUE perform analysis with a subset variable ( and |
outcome_na |
Method for handling any NA values in the outcome vec. 'remove' removes rows with NA outcomes while 'set0' keeps the row and sets the outcome to 0. |
subset_na |
Method for handling any NA subset values. 'remove' removes rows with NA subset values while 'category' makes a new subset category (coded as 99) for NA values. |
cat_na |
Method for handling any NA values in the categorical risk adjusters. 'remove' removes rows with NA values while 'category' makes a new category (coded as 99) for NA catorical risk adjusters. |
cont_na |
Method for handling any NA values in the continous risk adjusters. 'remove' removes rows with NA values while 'median' replaces NA with the median value of the risk adjuster. |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.