instant_change_wrapper <- function(samples_df) {
samples_plus_one <- samples_df %>%
select(row, draw, fitted, identifier, currency) %>%
mutate(row = row + 1) %>%
rename(fitted_t_minus_one = fitted)
samples_df_change <- left_join(samples_df, samples_plus_one) %>%
filter(row != 1) %>%
mutate(tstep_change = fitted - fitted_t_minus_one) %>%
mutate(instant_change_proportional = tstep_change / fitted_t_minus_one) %>%
select(row, draw, year, instant_change_proportional, tstep_change, identifier, currency)
samples_df_change
}
instant_change_summary_wrapper <- function(instant_change_df) {
instant_change_df <- instant_change_df %>%
group_by(currency, identifier, row, year) %>%
summarize(mean_ichange_proportional = mean(instant_change_proportional),
lower_ichange_proportional = quantile(instant_change_proportional, probs = .025),
upper_ichange_proportional = quantile(instant_change_proportional, probs = .975))
instant_change_df
}
instant_change_absolute_summary_wrapper <- function(instant_change_df) {
instant_change_df <- instant_change_df %>%
mutate(absolute_change = abs(instant_change_proportional)) %>%
group_by(currency, identifier, draw) %>%
summarize(mean_ichange_over_ts = mean(instant_change_proportional),
mean_abs_ichange_over_ts = mean(absolute_change)) %>%
ungroup()
instant_change_df
}
net_change_wrapper <- function(samples_df) {
curr = samples_df$currency[1]
identif = samples_df$identifier[1]
start_row <- min(samples_df$row)
end_row <- max(samples_df$row)
change_df <- samples_df %>%
filter(row %in% c(start_row, end_row)) %>%
mutate(order = ifelse(row == start_row, "start", "end")) %>%
select(order, draw, fitted) %>%
tidyr::pivot_wider(id_cols = draw, names_from = order, values_from = fitted) %>%
mutate(net_change = end - start) %>%
mutate(net_proportional = net_change / start) %>%
mutate(currency = curr,
identifier = identif)
return(change_df)
}
change_summary_wrapper <- function(change_df) {
change_df <- change_df %>%
group_by(currency, identifier) %>%
summarize(mean_net_proportional = mean(net_proportional),
lower_net_proportional = quantile(net_proportional, probs = .025),
upper_net_proportional = quantile(net_proportional, probs = .975))
change_df
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.