library(readr)
library(dplyr)
library(lubridate)
library(stringr)
files <- list.files("analysis/data/raw_data/temperature/air")
columns <- c("row", "datetime", "temp", "lux", "bad", "good", "coupler", "host", "stopped", "end")
###########
# need to clip raw data to days in the field and not include time in lab before downloading
###########
# air <- list()
for(i in 1:length(files)) {
tmp <- read_csv(file.path("analysis/data/raw_data/temperature/air", files[i]), skip = 2, col_names = FALSE)
tmp_names <- columns[1:ncol(tmp)]
names(tmp) <- tmp_names
if(i == 1) {
df_air <- tmp
} else {
df_air <- bind_rows(df_air, tmp)
}
}
df_air <- df_air %>%
mutate(datetime = parse_date_time(datetime, orders = c("%m/%d/%y %H:%M", "%m/%d/%y %I:%M:%S %p")))
summary(df_air)
unique(df_air$bad)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.