ggmap: Plot a ggmap object

Description Usage Arguments Value Author(s) See Also Examples

View source: R/ggmap.R

Description

ggmap plots the raster object produced by get_map.

Usage

1
2
3
ggmap(ggmap, extent = "panel", base_layer, maprange = FALSE,
  legend = "right", padding = 0.02, darken = c(0, "black"), b, fullpage,
  expand, ...)

Arguments

ggmap

an object of class ggmap (from function get_map)

extent

how much of the plot should the map take up? "normal", "device", or "panel" (default)

base_layer

a ggplot(aes(...), ...) call; see examples

maprange

logical for use with base_layer; should the map define the x and y limits?

legend

"left", "right" (default), "bottom", "top", "bottomleft", "bottomright", "topleft", "topright", "none" (used with extent = "device")

padding

distance from legend to corner of the plot (used with legend, formerly b)

darken

vector of the form c(number, color), where number is in [0, 1] and color is a character string indicating the color of the darken. 0 indicates no darkening, 1 indicates a black-out.

b

Deprecated, renamed to 'padding'. Overrides any 'padding' argument.

fullpage

Deprecated, equivalent to 'extent = "device"' when 'TRUE'. Overrides any 'extent' argument.

expand

Deprecated, equivalent to 'extent = "panel"' when 'TRUE' and 'fullpage' is 'FALSE'. When 'fullpage' is 'FALSE' and 'expand' is 'FALSE', equivalent to 'extent="normal"'. Overrides any 'extent' argument.

...

...

Value

a ggplot object

Author(s)

David Kahle [email protected]

See Also

get_map, qmap

Examples

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
## Not run: ## map queries drag R CMD check


## extents and legends
##################################################
hdf <- get_map("houston, texas")
ggmap(hdf, extent = "normal")
ggmap(hdf) # extent = "panel", note qmap defaults to extent = "device"
ggmap(hdf, extent = "device")



# make some fake spatial data
mu <- c(-95.3632715, 29.7632836); nDataSets <- sample(4:10,1)
chkpts <- NULL
for(k in 1:nDataSets){
  a <- rnorm(2); b <- rnorm(2);
  si <- 1/3000 * (outer(a,a) + outer(b,b))
  chkpts <- rbind(
    chkpts,
    cbind(MASS::mvrnorm(rpois(1,50), jitter(mu, .01), si), k)
  )
}
chkpts <- data.frame(chkpts)
names(chkpts) <- c("lon", "lat","class")
chkpts$class <- factor(chkpts$class)
qplot(lon, lat, data = chkpts, colour = class)

# show it on the map
ggmap(hdf, extent = "normal") +
  geom_point(aes(x = lon, y = lat, colour = class), data = chkpts, alpha = .5)

ggmap(hdf) +
  geom_point(aes(x = lon, y = lat, colour = class), data = chkpts, alpha = .5)

ggmap(hdf, extent = "device") +
  geom_point(aes(x = lon, y = lat, colour = class), data = chkpts, alpha = .5)

theme_set(theme_bw())
ggmap(hdf, extent = "device") +
  geom_point(aes(x = lon, y = lat, colour = class), data = chkpts, alpha = .5)

ggmap(hdf, extent = "device", legend = "topleft") +
  geom_point(aes(x = lon, y = lat, colour = class), data = chkpts, alpha = .5)

# qmplot is great for this kind of thing...
qmplot(lon, lat, data = chkpts, color = class, darken = .6)
qmplot(lon, lat, data = chkpts, geom = "density2d", color = class, darken = .6)

## maprange
##################################################

hdf <- get_map()
mu <- c(-95.3632715, 29.7632836)
points <- data.frame(MASS::mvrnorm(1000, mu = mu, diag(c(.1, .1))))
names(points) <- c("lon", "lat")
points$class <- sample(c("a","b"), 1000, replace = TRUE)

ggmap(hdf) + geom_point(data = points) # maprange built into extent = panel, device
ggmap(hdf) + geom_point(aes(colour = class), data = points)

ggmap(hdf, extent = "normal") + geom_point(data = points)
# note that the following is not the same as extent = panel
ggmap(hdf, extent = "normal", maprange = TRUE) + geom_point(data = points)

# and if you need your data to run off on a extent = device (legend included)
ggmap(hdf, extent = "normal", maprange = TRUE) +
  geom_point(aes(colour = class), data = points) +
  theme_nothing(legend = TRUE) + theme(legend.position = "right")

# again, qmplot is probably more useful
qmplot(lon, lat, data = points, color = class, darken = .4, alpha = I(.6))
qmplot(lon, lat, data = points, color = class, maptype = "toner-lite")

## cool examples
##################################################

# contour overlay
ggmap(get_map(maptype = "satellite"), extent = "device") +
  stat_density2d(aes(x = lon, y = lat, colour = class), data = chkpts, bins = 5)


# adding additional content
library(grid)
baylor <- get_map("one bear place, waco, texas", zoom = 15, maptype = "satellite")
ggmap(baylor)

# use gglocator to find lon/lat"s of interest
(clicks <- gglocator(2) )
ggmap(baylor) +
  geom_point(aes(x = lon, y = lat), data = clicks, colour = "red", alpha = .5)
expand.grid(lon = clicks$lon, lat = clicks$lat)

ggmap(baylor) + theme_bw() +
  annotate("segment", x=-97.110, xend=-97.1188, y=31.5450, yend=31.5485,
    colour=I("red"), arrow = arrow(length=unit(0.3,"cm")), size = 1.5) +
  annotate("label", x=-97.113, y=31.5445, label = "Department of Statistical Science",
    colour = I("red"), size = 3.5) +
  labs(x = "Longitude", y = "Latitude") + ggtitle("Baylor University")


baylor <- get_map("marrs mclean science, waco, texas", zoom = 16, maptype = "satellite")

ggmap(baylor, extent = "panel") +
  annotate("segment", x=-97.1175, xend=-97.1188, y=31.5449, yend=31.5485,
    colour=I("red"), arrow = arrow(length=unit(0.4,"cm")), size = 1.5) +
  annotate("label", x=-97.1175, y=31.5447, label = "Department of Statistical Science",
    colour = I("red"), size = 4)



# a shapefile like layer
data(zips)
ggmap(get_map(maptype = "satellite", zoom = 8), extent = "device") +
  geom_polygon(aes(x = lon, y = lat, group = plotOrder),
    data = zips, colour = NA, fill = "red", alpha = .2) +
  geom_path(aes(x = lon, y = lat, group = plotOrder),
    data = zips, colour = "white", alpha = .4, size = .4)

library(plyr)
zipsLabels <- ddply(zips, .(zip), function(df){
  df[1,c("area", "perimeter", "zip", "lonCent", "latCent")]
})
ggmap(get_map(maptype = "satellite", zoom = 9),
    extent = "device", legend = "none", darken = .5) +
  geom_text(aes(x = lonCent, y = latCent, label = zip, size = area),
    data = zipsLabels, colour = I("red")) +
  scale_size(range = c(1.5,6))

qmplot(lonCent, latCent, data = zipsLabels, geom = "text",
  label = zip, size = area, maptype = "toner-lite", color = I("red")
)


## crime data example
##################################################

# only violent crimes
violent_crimes <- subset(crime,
  offense != "auto theft" &
  offense != "theft" &
  offense != "burglary"
)

# rank violent crimes
violent_crimes$offense <-
  factor(violent_crimes$offense,
    levels = c("robbery", "aggravated assault",
      "rape", "murder")
  )

# restrict to downtown
violent_crimes <- subset(violent_crimes,
  -95.39681 <= lon & lon <= -95.34188 &
   29.73631 <= lat & lat <=  29.78400
)


# get map and bounding box
theme_set(theme_bw(16))
HoustonMap <- qmap("houston", zoom = 14, color = "bw",
  extent = "device", legend = "topleft")
HoustonMap <- ggmap(
  get_map("houston", zoom = 14, color = "bw"),
  extent = "device", legend = "topleft"
)

# the bubble chart
HoustonMap +
   geom_point(aes(x = lon, y = lat, colour = offense, size = offense), data = violent_crimes) +
   scale_colour_discrete("Offense", labels = c("Robbery","Aggravated Assault","Rape","Murder")) +
   scale_size_discrete("Offense", labels = c("Robbery","Aggravated Assault","Rape","Murder"),
     range = c(1.75,6)) +
   guides(size = guide_legend(override.aes = list(size = 6))) +
   theme(
     legend.key.size = grid::unit(1.8,"lines"),
     legend.title = element_text(size = 16, face = "bold"),
     legend.text = element_text(size = 14)
   ) +
   labs(colour = "Offense", size = "Offense")


# doing it with qmplot is even easier
qmplot(lon, lat, data = violent_crimes, maptype = "toner-lite",
  color = offense, size = offense, legend = "topleft"
)

# or, with styling:
qmplot(lon, lat, data = violent_crimes, maptype = "toner-lite",
  color = offense, size = offense, legend = "topleft"
) +
  scale_colour_discrete("Offense", labels = c("Robbery","Aggravated Assault","Rape","Murder")) +
  scale_size_discrete("Offense", labels = c("Robbery","Aggravated Assault","Rape","Murder"),
    range = c(1.75,6)) +
  guides(size = guide_legend(override.aes = list(size = 6))) +
  theme(
    legend.key.size = grid::unit(1.8,"lines"),
    legend.title = element_text(size = 16, face = "bold"),
    legend.text = element_text(size = 14)
  ) +
  labs(colour = "Offense", size = "Offense")






# a contour plot
HoustonMap +
  stat_density2d(aes(x = lon, y = lat, colour = offense),
    size = 3, bins = 2, alpha = 3/4, data = violent_crimes) +
   scale_colour_discrete("Offense", labels = c("Robbery","Aggravated Assault","Rape","Murder")) +
   theme(
     legend.text = element_text(size = 15, vjust = .5),
     legend.title = element_text(size = 15,face="bold"),
     legend.key.size = grid::unit(1.8,"lines")
   )



# 2d histogram...
HoustonMap +
  stat_bin_2d(aes(x = lon, y = lat, colour = offense, fill = offense),
    size = .5, bins = 30, alpha = 2/4, data = violent_crimes) +
   scale_colour_discrete("Offense",
     labels = c("Robbery","Aggravated Assault","Rape","Murder"),
     guide = FALSE) +
   scale_fill_discrete("Offense", labels = c("Robbery","Aggravated Assault","Rape","Murder")) +
   theme(
     legend.text = element_text(size = 15, vjust = .5),
     legend.title = element_text(size = 15,face="bold"),
     legend.key.size = grid::unit(1.8,"lines")
   )





# changing gears (get a color map)
houston <- get_map("houston", zoom = 14)
HoustonMap <- ggmap(houston, extent = "device", legend = "topleft")

# a filled contour plot...
HoustonMap +
  stat_density2d(aes(x = lon, y = lat, fill = ..level.., alpha = ..level..),
    size = 2, bins = 4, data = violent_crimes, geom = "polygon") +
  scale_fill_gradient("Violent\nCrime\nDensity") +
  scale_alpha(range = c(.4, .75), guide = FALSE) +
  guides(fill = guide_colorbar(barwidth = 1.5, barheight = 10))

# ... with an insert

overlay <- stat_density2d(aes(x = lon, y = lat, fill = ..level.., alpha = ..level..),
    bins = 4, geom = "polygon", data = violent_crimes)

attr(houston,"bb") # to help finding (x/y)(min/max) vals below

HoustonMap +
  stat_density2d(aes(x = lon, y = lat, fill = ..level.., alpha = ..level..),
    bins = 4, geom = "polygon", data = violent_crimes) +
  scale_fill_gradient("Violent\nCrime\nDensity") +
  scale_alpha(range = c(.4, .75), guide = FALSE) +
  guides(fill = guide_colorbar(barwidth = 1.5, barheight = 10)) +
  inset(
    grob = ggplotGrob(ggplot() + overlay +
      scale_fill_gradient("Violent\nCrime\nDensity") +
      scale_alpha(range = c(.4, .75), guide = FALSE) +
      theme_inset()
    ),
    xmin = -95.35877, xmax = -95.34229,
    ymin = 29.73754, ymax = 29.75185
  )









## more examples
##################################################

# you can layer anything on top of the maps (even meaningless stuff)
df <- data.frame(
  lon = rep(seq(-95.39, -95.35, length.out = 8), each = 20),
  lat = sapply(
    rep(seq(29.74, 29.78, length.out = 8), each = 20),
    function(x) rnorm(1, x, .002)
  ),
  class = rep(letters[1:8], each = 20)
)

qplot(lon, lat, data = df, geom = "boxplot", fill = class)

HoustonMap +
  geom_boxplot(aes(x = lon, y = lat, fill = class), data = df)




## the base_layer argument - faceting
##################################################

df <- data.frame(
  x = rnorm(1000, -95.36258, .2),
  y = rnorm(1000,  29.76196, .2)
)

# no apparent change because ggmap sets maprange = TRUE with extent = "panel"
ggmap(get_map(), base_layer = ggplot(aes(x = x, y = y), data = df)) +
  geom_point(colour = "red")

# ... but there is a difference
ggmap(get_map(), base_layer = ggplot(aes(x = x, y = y), data = df), extent = "normal") +
  geom_point(colour = "red")

# maprange can fix it (so can extent = "panel")
ggmap(get_map(), maprange = TRUE, extent = "normal",
  base_layer = ggplot(aes(x = x, y = y), data = df)) +
  geom_point(colour = "red")

# base_layer makes faceting possible
df <- data.frame(
  x = rnorm(10*100, -95.36258, .075),
  y = rnorm(10*100,  29.76196, .075),
  year = rep(paste("year",format(1:10)), each = 100)
)
ggmap(get_map(), base_layer = ggplot(aes(x = x, y = y), data = df)) +
  geom_point() +  facet_wrap(~ year)

ggmap(get_map(), base_layer = ggplot(aes(x = x, y = y), data = df), extent = "device") +
  geom_point() +  facet_wrap(~ year)

qmplot(x, y, data = df)
qmplot(x, y, data = df, facets = ~ year)


## neat faceting examples
##################################################

# simulated example
df <- data.frame(
  x = rnorm(10*100, -95.36258, .05),
  y = rnorm(10*100,  29.76196, .05),
  year = rep(paste("year",format(1:10)), each = 100)
)
for(k in 0:9){
  df$x[1:100 + 100*k] <- df$x[1:100 + 100*k] + sqrt(.05)*cos(2*pi*k/10)
  df$y[1:100 + 100*k] <- df$y[1:100 + 100*k] + sqrt(.05)*sin(2*pi*k/10)
}

ggmap(get_map(),
  base_layer = ggplot(aes(x = x, y = y), data = df)) +
  stat_density2d(aes(fill = ..level.., alpha = ..level..),
    bins = 4, geom = "polygon") +
  scale_fill_gradient2(low = "white", mid = "orange", high = "red", midpoint = 10) +
  scale_alpha(range = c(.2, .75), guide = FALSE) +
  facet_wrap(~ year)



# crime example by month
levels(violent_crimes$month) <- paste(
  toupper(substr(levels(violent_crimes$month),1,1)),
  substr(levels(violent_crimes$month),2,20), sep = ""
)
houston <- get_map(location = "houston", zoom = 14, source = "osm", color = "bw")
HoustonMap <- ggmap(houston,
  base_layer = ggplot(aes(x = lon, y = lat), data = violent_crimes)
  )

HoustonMap +
  stat_density2d(aes(x = lon, y = lat, fill = ..level.., alpha = ..level..),
    bins = I(5), geom = "polygon", data = violent_crimes) +
  scale_fill_gradient2("Violent\nCrime\nDensity",
    low = "white", mid = "orange", high = "red", midpoint = 500) +
  labs(x = "Longitude", y = "Latitude") + facet_wrap(~ month) +
  scale_alpha(range = c(.2, .55), guide = FALSE) +
  ggtitle("Violent Crime Contour Map of Downtown Houston by Month") +
  guides(fill = guide_colorbar(barwidth = 1.5, barheight = 10))








## darken argument
##################################################
ggmap(get_map())
ggmap(get_map(), darken = .5)
ggmap(get_map(), darken = c(.5,"white"))
ggmap(get_map(), darken = c(.5,"red")) # silly, but possible



## End(Not run)

dkahle/ggmap documentation built on Feb. 22, 2018, 11:09 a.m.