| bvptwpC | R Documentation | 
Interface to bvptwp()
bvptwpC( yini = NULL, x, func, yend = NULL, parms, xguess = NULL, yguess = NULL, ... )
yini | 
 named vector of type numeric. Initial values to be overwritten.  | 
x | 
 vector of type numeric. Integration times  | 
func | 
 return value from funC() with a boundary argument.  | 
yend | 
 named vector of type numeric. End values to be overwritten.  | 
parms | 
 named vector of type numeric. The dynamic parameters.  | 
xguess | 
 vector of type numeric, the x values  | 
yguess | 
 matrix with as many rows as variables and columns as x values  | 
... | 
 further arguments going to   | 
See bvpSolve-package for a full description of possible arguments
matrix with times and states
## Not run: 
######################################################################
## Boundary value problem: Ozon formation with fixed ozon/oxygen ratio
## at final time point
######################################################################
library(bvpSolve)
# O2 + O <-> O3
# diff = O2 - O3
# build_O3 = const.
f <- c(
  O3 = " build_O3 * O2 * O - decay_O3 * O3",
  O2 = "-build_O3 * O2 * O + decay_O3 * O3",
  O  = "-build_O3 * O2 * O + decay_O3 * O3",
  diff = "-2 * build_O3 * O2 * O + 2 * decay_O3 * O3", 
  build_O3 = "0"
)
bound <- data.frame(
    name = names(f),
    yini = c(0, 3, 2, 3, NA),
    yend = c(NA, NA, NA, 0, NA)
)
# Generate ODE function
func <- funC(f, jacobian="full", boundary = bound, modelname = "example4")
# Initialize times, states, parameters and forcings
times <- seq(0, 15, by = .1)
pars <- c(decay_O3 = .1)
xguess <- times
yguess <- matrix(c(1, 1, 1, 1, 1), ncol=length(times), 
                 nrow = length(f))
# Solve BVP
out <- bvptwpC(x = times, func = func, parms = pars, 
               xguess = xguess, yguess = yguess)
# Solve BVP for different ini values, end values and parameters
yini <- c(O3 = 2)
yend <- c(diff = 0.2)
pars <- c(decay_O3 = .01)
out <- bvptwpC(yini = yini, yend = yend, x = times, func = func, 
	       parms = pars, xguess = xguess, yguess = yguess)
# Plot solution
par(mfcol=c(1,2))
t <- out[,1]
M1 <- out[,2:5]
M2 <- cbind(out[,6], pars)
matplot(t, M1, type="l", lty=1, col=1:4, 
        xlab="time", ylab="value", main="states")
legend("topright", legend = c("O3", "O2", "O", "O2 - O3"), 
       lty=1, col=1:4)
matplot(t, M2, type="l", lty=1, col=1:2, 
        xlab="time", ylab="value", main="parameters")
legend("right", legend = c("build_O3", "decay_O3"), lty=1, col=1:2)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.