pd_predictAndPlot2 | R Documentation |
Title
pd_predictAndPlot2( pd, pe = pd$pe, i, j, opt.base = pd_parf_opt.base(), opt.mstrust = pd_parf_opt.mstrust(), opt.profile = pd_parf_opt.profile(FALSE), opt.L1 = pd_parf_opt.L1(FALSE), parf = NULL, NFLAGsubsetType = c(none = 0, strict = 1, keepInternal = 2, strict_cutTimes = 3, keepInternal_cutTimes = 3)["strict_cutTimes"], FLAGsummarizeProfilePredictions = TRUE, FLAGmeanLine = FALSE, nrow = 4, ncol = 5, aeslist = petab_plotHelpers_aeslist(), ggCallback = list(), opt.sim = list(Ntimes_gt5ParSetIds = 100, predtimes = NULL), opt.gg = list(ribbonAlpha = 0.2), FLAGreturnPlotData = FALSE, ... )
pd |
|
pe |
to draw other data |
i |
|
j |
|
opt.base |
|
opt.mstrust |
|
opt.profile |
|
opt.L1 |
|
parf |
parframe to simulate with. if supplied, opt.base,opt.mstrust,opt.profile are meaningless |
NFLAGsubsetType |
subset species, observableId, conditionId and "time".
|
FLAGsummarizeProfilePredictions |
summarize predictions based on profile likelihoods by ribbon |
FLAGmeanLine |
draw line for mean(data) |
nrow |
|
ncol |
|
aeslist |
list of aestheticss |
ggCallback |
list(ggplot2 calls), e.g. list(labs(title = "bla"), scale_y_log10()) |
opt.sim |
|
opt.gg |
|
FLAGreturnPlotData |
return list(data.tables) which go into plotting instead of ggplot |
... |
ggplot
Daniel Lill (daniel.lill@physik.uni-freiburg.de)
pd <- petab_exampleRead("04", "pd") # Show first two steps ( second step occurs at fitrank = 6) pd_predictAndPlot2(pd, opt.base = pd_parf_opt.base(F), opt.mstrust = pd_parf_opt.mstrust(fitrankRange = 1:6), nrow = 2, ncol = 2) # Show only subset of conditions and observables and time pd_predictAndPlot2(pd, i = conditionId == "C1" & observableId != "obsES" & time > 2, opt.base = pd_parf_opt.base(F), opt.mstrust = pd_parf_opt.mstrust(fitrankRange = 1:6), nrow = 2, ncol = 2) # Supply own parframe for simulation parf <- pd$result$base parf$S <- 5 parf$parameterSetId<-"modifiedBase" pd_predictAndPlot2(pd, parf = parf, nrow = 2, ncol = 2) # NFLAGsubsetType (implement examples with states without observables) # return plotting data to customize your own plot pd_predictAndPlot2(pd, parf = parf, nrow = 2, ncol = 2, FLAGreturnPlotData = TRUE) # When profiles are available, try this: pd_parf_opt.profile(TRUE) # ggCallback - add layers to your plot (separated by ,, not by +) pd_predictAndPlot2(pd, parf = parf, nrow = 2, ncol = 2, ggCallback = list(geom_hline(yintercept = 0, linetype = 2, color = "pink", size = 2), scale_color_brewer(palette = "Reds"), labs(title = "Hey Putin, stop this bullshit"))) # aeslist - change aesthetics pd_predictAndPlot2(pd, parf = parf, nrow = 2, ncol = 2, aeslist = petab_plotHelpers_aeslist(x=~conditionId, color = ~time), # for nice dose response, set to the dose variable in experimentalCondition and reset the group aesthetic as well ggCallback = list(geom_hline(yintercept = 0, linetype = 2, color = "pink", size = 2), scale_color_distiller(palette = "Blues")))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.