Description Usage Arguments Value Author(s) See Also Examples
From the result of GSEA, we can predict enrichment scores for unique tokens or words from text in names of gene sets by using deep learning. The function "text_token" is used for tokenizing text and the function "token_vector" is used for encoding. Then the encoded sequence is fed to the embedding layer of the model.
1 2 3 |
gseaRes |
a table with GSEA result having rows for gene sets and columns for text and scores |
text |
column name for text data |
score |
column name for enrichment score |
model |
deep learning model, input dimension and length for the embedding layer must be same to the "num_token" and "length_seq", respectively |
ngram_min |
minimum size of an n-gram (default: 1) |
ngram_max |
maximum size of an n-gram (default: 2) |
num_tokens |
maximum number of tokens, it must be equal to the input dimension of "layer_embedding" in the "model" |
length_seq |
length of input sequences, it must be equal to the input length of "layer_embedding" in the "model" |
epochs |
number of epochs |
batch_size |
batch size |
use_generator |
if "use_generator" is TRUE, the function "sampling_generator" is used for "fit_generator". Otherwise, the "fit" is used without a generator. |
... |
additional parameters for the "fit" or "fit_generator" |
model |
trained model |
tokens |
information for tokens |
token_pred |
prediction for every token, each row has a token and its predicted score |
token_gsea |
list of the GSEA result only for the corresponding token |
num_tokens |
maximum number of tokens |
length_seq |
length of input sequences |
Dongmin Jung
keras::fit_generator, keras::layer_embedding, keras::pad_sequences, textstem::lemmatize_strings, text2vec::create_vocabulary, text2vec::prune_vocabulary
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | library(reticulate)
if (keras::is_keras_available() & reticulate::py_available()) {
library(fgsea)
data(examplePathways)
data(exampleRanks)
names(examplePathways) <- gsub("_", " ",
substr(names(examplePathways), 9, 1000))
set.seed(1)
fgseaRes <- fgsea(examplePathways, exampleRanks)
num_tokens <- 1000
length_seq <- 30
batch_size <- 32
embedding_dims <- 50
num_units <- 32
epochs <- 1
ttgseaRes <- fit_model(fgseaRes, "pathway", "NES",
model = bi_gru(num_tokens,
embedding_dims,
length_seq,
num_units),
num_tokens = num_tokens,
length_seq = length_seq,
epochs = epochs,
batch_size = batch_size,
use_generator = FALSE)
}
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.