## ---- include = FALSE-----------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----echo = F, message = F, warning = F-----------------
knitr::opts_chunk$set(echo = TRUE)
library(lavaan)
library(semPlot)
## ----echo=FALSE, out.width = "75%", fig.align="center"----
knitr::include_graphics("pictures/full_sem2.png")
## ----echo=FALSE, out.width = "75%", fig.align="center"----
knitr::include_graphics("pictures/indicators.png")
## ----echo=FALSE, out.width = "75%", fig.align="center"----
knitr::include_graphics("pictures/kline_model.png")
## -------------------------------------------------------
library(lavaan)
library(semPlot)
family.cor <- lav_matrix_lower2full(c(1.00,
.74, 1.00,
.27, .42, 1.00,
.31, .40, .79, 1.00,
.32, .35, .66, .59, 1.00))
family.sd <- c(32.94, 22.75, 13.39, 13.68, 14.38)
rownames(family.cor) <-
colnames(family.cor) <-
names(family.sd) <- c("father", "mother", "famo", "problems", "intimacy")
family.cov <- cor2cov(family.cor, family.sd)
## -------------------------------------------------------
family.model <- '
adjust =~ problems + intimacy
family =~ father + mother + famo'
## -------------------------------------------------------
family.fit <- cfa(model = family.model,
sample.cov = family.cov,
sample.nobs = 203)
## -------------------------------------------------------
inspect(family.fit, "cov.lv")
inspect(family.fit, "cor.lv")
## -------------------------------------------------------
family.fit <- cfa(model = family.model,
sample.cov = family.cor,
sample.nobs = 203)
## -------------------------------------------------------
summary(family.fit,
rsquare = TRUE,
standardized = TRUE,
fit.measures = TRUE)
## -------------------------------------------------------
modificationindices(family.fit, sort = T)
## -------------------------------------------------------
family.model2 <- '
adjust =~ problems + intimacy
family =~ father + mother + famo
father ~~ mother'
family.fit2 <- cfa(model = family.model2,
sample.cov = family.cov,
sample.nobs = 203)
inspect(family.fit2, "cor.lv")
## -------------------------------------------------------
semPaths(family.fit,
whatLabels="std",
layout="tree",
edge.label.cex = 1)
## -------------------------------------------------------
predict.model <- '
adjust =~ problems + intimacy
family =~ father + mother + famo
adjust~family'
## -------------------------------------------------------
predict.fit <- sem(model = predict.model,
sample.cov = family.cor,
sample.nobs = 203)
## -------------------------------------------------------
summary(predict.fit,
rsquare = TRUE,
standardized = TRUE,
fit.measures = TRUE)
## -------------------------------------------------------
semPaths(predict.fit,
whatLabels="std",
layout="tree",
edge.label.cex = 1)
## ----echo=FALSE, out.width = "75%", fig.align="center"----
knitr::include_graphics("pictures/full_example.png")
## -------------------------------------------------------
family.cor <- lav_matrix_lower2full(c(1.00,
.42, 1.00,
-.43, -.50, 1.00,
-.39, -.43, .78, 1.00,
-.24, -.37, .69, .73, 1.00,
-.31, -.33, .63, .87, .72, 1.00,
-.25, -.25, .49, .53, .60, .59, 1.00,
-.25, -.26, .42, .42, .44, .45, .77, 1.00,
-.16, -.18, .23, .36, .38, .38, .59, .58, 1.00))
family.sd <- c(13.00, 13.50, 13.10, 12.50, 13.50, 14.20, 9.50, 11.10, 8.70)
rownames(family.cor) <-
colnames(family.cor) <-
names(family.sd) <- c("parent_psych","low_SES","verbal",
"reading","math","spelling","motivation","harmony","stable")
family.cov <- cor2cov(family.cor, family.sd)
## -------------------------------------------------------
composite.model <- '
risk <~ low_SES + parent_psych + verbal
achieve =~ reading + math + spelling
adjustment =~ motivation + harmony + stable
risk =~ achieve + adjustment
'
## -------------------------------------------------------
composite.fit <- sem(model = composite.model,
sample.cov = family.cov,
sample.nobs = 158)
## -------------------------------------------------------
summary(composite.fit,
rsquare = TRUE,
standardized = TRUE,
fit.measures = TRUE)
## -------------------------------------------------------
modificationindices(composite.fit, sort = T)
## -------------------------------------------------------
semPaths(composite.fit,
whatLabels="std",
layout="tree",
edge.label.cex = 1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.