Description Usage Arguments Details Value Examples
View source: R/helper_functions.R
To get gamma_tilde, \gamma_k,i is simulated from it's predictive distribution using post_sigma_delta_k and post_nu. If post_sigma_delta_k is not provided, it is not sampled.
1 2 3 4 5 6 7 8 | fosr_predict(
X,
post_fk,
post_alpha,
post_sigma_delta_k = NULL,
post_nu = NULL,
post_sigma_e = NULL
)
|
X |
a new input dataset to predict from |
post_fk |
mcmc samples from param fk |
post_alpha |
mcmc samples from param alpha |
post_sigma_delta_k |
mcmc samples from param sigma_delta_k |
post_nu |
mcmc samples from param nu |
post_sigma_e |
mcmc samples from param sigma_e |
eps_i is just white noise with standard deviations from post_sigma_e. If post_sigma_e is not provded, it is not sampled.
a list containing the following:
mean
: the posterior mean; the first term
gammaTilde
: the predictive random effects term; the second term
eps
: white noise of the right shape simulated from sigma_e
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 | library(fosr)
# Simulate some data:
n = 100
m = 20
p_0 = 100
p_1 = 5
sim_data = simulate_fosr(n = n, m = m, p_0 = p_0, p_1 = p_1)
# Data:
Y = sim_data$Y
X = sim_data$X
tau = sim_data$tau
# Dimensions:
n = nrow(Y)
m = ncol(Y)
p = ncol(X)
# Run the FOSR:
out = fosr(
Y = Y,
tau = tau,
X = X,
K = 6,
mcmc_params = list("fk", "alpha", "Yhat", "sigma_e", "sigma_g", "sigma_delta_k", "nu"))
YPredictInfo = fosr_predict(X, out$fk, out$alpha, out$sigma_delta_k, out$nu, out$sigma_e)
i = sample(1:n, 1)
YPredict = YPredictInfo$mean + YPredictInfo$gammaTilde + YPredictInfo$eps
plot_fitted(y = sim_data$Y[i,], mu = colMeans(YPredictInfo$mean[,i,]),
postY = YPredict[,i,], y_true = sim_data$Y_true[i,], t01 = sim_data$tau)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.