| star_MCMC | R Documentation |
Run the MCMC algorithm for STAR given
a function to initialize model parameters; and
a function to sample (i.e., update) model parameters.
The transformation can be known (e.g., log or sqrt) or unknown (Box-Cox or estimated nonparametrically) for greater flexibility.
star_MCMC(
y,
sample_params,
init_params,
transformation = "np",
y_max = Inf,
nsave = 5000,
nburn = 5000,
nskip = 2,
save_y_hat = FALSE,
verbose = TRUE
)
y |
|
sample_params |
a function that inputs data
and outputs an updated list |
init_params |
an initializing function that inputs data |
transformation |
transformation to use for the latent data; must be one of
|
y_max |
a fixed and known upper bound for all observations; default is |
nsave |
number of MCMC iterations to save |
nburn |
number of MCMC iterations to discard |
nskip |
number of MCMC iterations to skip between saving iterations, i.e., save every (nskip + 1)th draw |
save_y_hat |
logical; if TRUE, compute and save the posterior draws of the expected counts, E(y), which may be slow to compute |
verbose |
logical; if TRUE, print time remaining |
STAR defines a count-valued probability model by (1) specifying a Gaussian model for continuous *latent* data and (2) connecting the latent data to the observed data via a *transformation and rounding* operation.
Posterior and predictive inference is obtained via a Gibbs sampler that combines (i) a latent data augmentation step (like in probit regression) and (ii) an existing sampler for a continuous data model.
There are several options for the transformation. First, the transformation
can belong to the *Box-Cox* family, which includes the known transformations
'identity', 'log', and 'sqrt', as well as a version in which the Box-Cox parameter
is inferred within the MCMC sampler ('box-cox'). Second, the transformation
can be estimated (before model fitting) using the empirical distribution of the
data y. Options in this case include the empirical cumulative
distribution function (CDF), which is fully nonparametric ('np'), or the parametric
alternatives based on Poisson ('pois') or Negative-Binomial ('neg-bin')
distributions. For the parametric distributions, the parameters of the distribution
are estimated using moments (means and variances) of y.
a list with the following elements:
coefficients: the posterior mean of the coefficients
fitted.values: the posterior mean of the conditional expectation of the counts y
post.coefficients: posterior draws of the coefficients
post.fitted.values: posterior draws of the conditional mean of the counts y
post.pred: draws from the posterior predictive distribution of y
post.lambda: draws from the posterior distribution of lambda
post.sigma: draws from the posterior distribution of sigma
post.log.like.point: draws of the log-likelihood for each of the n observations
logLik: the log-likelihood evaluated at the posterior means
WAIC: Widely-Applicable/Watanabe-Akaike Information Criterion
p_waic: Effective number of parameters based on WAIC
## Not run:
# Simulate data with count-valued response y:
sim_dat = simulate_nb_lm(n = 100, p = 5)
y = sim_dat$y; X = sim_dat$X
# STAR: log-transformation:
fit_log = star_MCMC(y = y,
sample_params = function(y, params) sample_params_lm(y, X, params),
init_params = function(y) init_params_lm(y, X),
transformation = 'log')
# Posterior mean of each coefficient:
coef(fit_log)
# WAIC for STAR-log:
fit_log$WAIC
# MCMC diagnostics:
plot(as.ts(fit_log$post.coefficients[,1:3]))
# Posterior predictive check:
hist(apply(fit_log$post.pred, 1,
function(x) mean(x==0)), main = 'Proportion of Zeros', xlab='');
abline(v = mean(y==0), lwd=4, col ='blue')
# STAR: nonparametric transformation
fit = star_MCMC(y = y,
sample_params = function(y, params) sample_params_lm(y, X, params),
init_params = function(y) init_params_lm(y, X),
transformation = 'np')
# Posterior mean of each coefficient:
coef(fit)
# WAIC:
fit$WAIC
# MCMC diagnostics:
plot(as.ts(fit$post.coefficients[,1:3]))
# Posterior predictive check:
hist(apply(fit$post.pred, 1,
function(x) mean(x==0)), main = 'Proportion of Zeros', xlab='');
abline(v = mean(y==0), lwd=4, col ='blue')
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.