star_MCMC_ispline | R Documentation |
Run the MCMC algorithm for STAR given
a function to initialize model parameters; and
a function to sample (i.e., update) model parameters.
The transformation is modeled as an unknown, monotone function using I-splines. The Robust Adaptive Metropolis (RAM) sampler is used for drawing the parameter of the transformation function.
star_MCMC_ispline(
y,
sample_params,
init_params,
lambda_prior = 1/2,
y_max = Inf,
nsave = 5000,
nburn = 5000,
nskip = 2,
save_y_hat = FALSE,
target_acc_rate = 0.3,
adapt_rate = 0.75,
stop_adapt_perc = 0.5,
verbose = TRUE
)
y |
|
sample_params |
a function that inputs data
and outputs an updated list |
init_params |
an initializing function that inputs data |
lambda_prior |
the prior mean for the transformation g() is the Box-Cox function with
parameter |
y_max |
a fixed and known upper bound for all observations; default is |
nsave |
number of MCMC iterations to save |
nburn |
number of MCMC iterations to discard |
nskip |
number of MCMC iterations to skip between saving iterations, i.e., save every (nskip + 1)th draw |
save_y_hat |
logical; if TRUE, compute and save the posterior draws of the expected counts, E(y), which may be slow to compute |
target_acc_rate |
target acceptance rate (between zero and one) |
adapt_rate |
rate of adaptation in RAM sampler (between zero and one) |
stop_adapt_perc |
stop adapting at the proposal covariance at |
verbose |
logical; if TRUE, print time remaining |
a list with the following elements:
coefficients
: the posterior mean of the coefficients
fitted.values
: the posterior mean of the conditional expectation of the counts y
post.coefficients
: posterior draws of the coefficients
post.fitted.values
: posterior draws of the conditional mean of the counts y
post.pred
: draws from the posterior predictive distribution of y
post.g
: draws from the posterior distribution of the transformation g
post.sigma
: draws from the posterior distribution of sigma
post.sigma.gamma
: draws from the posterior distribution of sigma.gamma
,
the prior standard deviation of the transformation g() coefficients
post.log.like.point
: draws of the log-likelihood for each of the n
observations
WAIC
: Widely-Applicable/Watanabe-Akaike Information Criterion
p_waic
: Effective number of parameters based on WAIC
## Not run:
# Simulate data with count-valued response y:
sim_dat = simulate_nb_lm(n = 100, p = 5)
y = sim_dat$y; X = sim_dat$X
# STAR: unknown I-spline transformation
fit = star_MCMC_ispline(y = y,
sample_params = function(y, params) sample_params_lm(y, X, params),
init_params = function(y) init_params_lm(y, X))
# Posterior mean of each coefficient:
coef(fit)
# WAIC for STAR-np:
fit$WAIC
# MCMC diagnostics:
plot(as.ts(fit$post.coefficients[,1:3]))
# Posterior predictive check:
hist(apply(fit$post.pred, 1,
function(x) mean(x==0)), main = 'Proportion of Zeros', xlab='');
abline(v = mean(y==0), lwd=4, col ='blue')
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.