Description Usage Arguments Value Author(s) See Also Examples
Find best variables using Random Forest (Interpretation Step). Find complete documentation at
rfThresh
1 |
object |
a rfThresh object |
nruns |
how many forests should be grown? |
nsd |
defaults to one. |
importance |
method of calculating importance (permutation or gini) |
... |
other arguments passed to |
varselect.interp |
The variables selected for Interpretation (sorted) |
err.interp |
The error at each stage of the stepwise variable inclusion. |
sd.min |
The standard deviation of the minimum fitted value. |
num.varselect.interp |
The number of variables selected for interpretation. |
comput.time |
Computation time of the procedure. |
data |
The dataset used for fitting the RF algorithm |
formula |
The formula of all variables included after the interpretation step. |
Robin Genuer, Jean-Michel Poggi and Christine Tuleau-Malot, with modifications by Dustin Fife
1 2 3 4 5 6 7 8 | #### do threshold step
## Not run: data(iris);
data = iris;
formula = as.formula("Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width")
object = rfThresh(formula, data=iris, nruns=2, importance="gini");
#### run interpretation step
rfInterp(object, nruns=10, importance="permutation")
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.