generate_datasets: Generate toy datasets with dyntoy

Description Usage Arguments

Description

Generate toy datasets with dyntoy

Usage

1
2
3
4
5
6
7
8
9
generate_datasets(models = c("linear", "cyclic", "bifurcating",
  "multifurcating", "binary_tree", "tree", "converging",
  "diverging_converging", "diverging_with_loops", "looping", "connected",
  "disconnected"), num_cells = 99, num_features = 101,
  allow_tented_progressions = TRUE, sample_mean_count = function()
  runif(1, 100, 1000), sample_dispersion_count = function(mean)
  map_dbl(mean, ~runif(1, ./10, ./4)), dropout_probability_factor = 100,
  normalise = FALSE, add_prior_information = TRUE,
  num_replicates = 3)

Arguments

models

A list of network models to use to generate the milestone networks.

  • a character vector (e.g. c("linear", "bifurcating")),

  • a list of functions (e.g. list(model_linear, model_bifurcating)),

  • a list of data frames (e.g. list(model_linear(), model_bifurcating()))

num_cells

The number of cells in each dataset

num_features

Number of features

allow_tented_progressions

Whether or not to be able to generate cells as part of a divergence.

sample_mean_count

Function used to sample the mean expression

sample_dispersion_count

Function to sample the dispersion (size) of the negative biniomal given the expression. Higher dispersion values generate less noise

dropout_probability_factor

Factor used to calculate the probabilities of dropouts, relative to expression. Higher values (> 10000) have a lot of dropouts, lower values (< 10) have almost none

normalise

Whether or not to normalise the dataset

add_prior_information

Whether to add prior information

num_replicates

How many replicates of each TI type to generate


dynverse/dyntoy documentation built on May 25, 2019, 4:26 p.m.