Description Usage Arguments Value Examples
This function takes input data, the desired number of nearest neighbors, the number of folds to be used for k-fold cross validation and performs k-fold cross validation from the given input data
1 | my_knn_cv(train, cl, k_nn, k_cv)
|
train |
a numeric input data frame |
cl |
the true class value of the training data |
k_nn |
a numeric representing the desired number of nearest neighbors |
k_cv |
a numeric representing the number of folds to be used for k-fold cross validation |
A list of two objects where the first object are the predicted outcomes based on the input data and the second object is the average cross-validation misclassification error rate
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | data("my_penguins")
penguin_data <- my_penguins[c("bill_length_mm",
"bill_depth_mm",
"flipper_length_mm",
"body_mass_g",
"species")]
penguin_data <- as.data.frame(penguin_data)
# remove rows containing NA values
data_noNA <- na.omit(penguin_data)
# split data into predictors and outcome
train <- data_noNA[, 1:4]
cl <- data_noNA[, 5]
# test function with 1-nearest neighbor and 5-fold cv
results_1nn_5cv <- my_knn_cv(train, cl, 1, 5)
# test function with 5-nearest neighbor and 5-fold cv
results_5nn_5cv <- my_knn_cv(train, cl, 5, 5)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.