# ---
# title: Imputed values and confidence intervals
# author: Michelle María Early Capistrán
# email: earlycapistran@comunidad.unam.mx
# date: March 2021
# Script and data info:
# - This script makes a scatterplot for imputed values with 95% confidence
# intervals and a scatterplot with all imputed and observed values.
# - Multiply imputed data is generated by "~R/analysis/cons_mice_analysis.R" and
# "~R/analysis/cf_mice_analysis.R" and processed with
# "~/R/analysis/imputed_data_wrangling.R"
# - Observed data were obtained from ecological monitoring (1995-2018) in
# Bahía de los Ángeles, Baja California, Mexico by Dr. J. Seminoff, Grupo
# Tortuguero de Bahía de los Ángeles, and Comisión Nacional de Áreas
# Naturales Protegidas and LEK-derived data from Early-Capistrán et al.
# (PeerJ,2020)
# - - -
# Load libraries and packages
library("ggthemes")
library("tidyverse")
library("here")
library("devtools")
load_all("consLettersUtils")
# Source ggplot theme ---------------------------------------------------------
# source("R/functions/theme_cmydas.R")
# Load data and prepare data -------------------------------------------------
# Store "year" values as label to replace serialized values
year_labels <- seq(1950, 2020, by=5)
# Load observed and imputed data generated by "R/imputed_data_wrangling.R"
obs_imp_data <- readRDS("results/obs_imp_data")
# Calculate confidence intervals
imp_ci <- obs_imp_data %>%
filter(type == "imputed") %>%
group_by(yearSerial, dataSource) %>%
summarise(n = n(),
mean = mean(cpue),
sd = sd(cpue)) %>%
mutate(se = sd/sqrt(n), # Calculate standard error
tScore = qt(p = 0.05/2, df = n -1, lower.tail=F),
ci = tScore * se) %>%
suppressWarnings()
# Plot error bars from computed confidence intervals
ggplot(imp_ci, aes(x=yearSerial, y=mean, color=dataSource)) +
geom_point() +
geom_pointrange(aes(x=yearSerial,
y = mean,
ymin = mean - ci,
ymax = mean + ci)) +
labs(y = "CPUE (turtles/12 hr)",
x = "Year",
color = "Source",
shape = "Data type",
text=element_text(size=5)) +
theme_cmydas()
# Make plots with all imputed points ------------------------------------------
# You can also view a scatterplot of all values imputed with 'mice'.
# using "jitter" distribution to avoid overplotting
all_scatter <- ggplot(aes(x=yearSerial, y=cpue),
data=obs_imp_data %>%
filter(type == "imputed")) +
geom_jitter(alpha = 0.25, col = "#00BFC4") +
labs(y = "CPUE (turtles/12 hr)", x = "Year") +
theme_cmydas() +
scale_x_continuous( # Change x-axis label to calendar years
breaks = seq(-2, 69, by=5), # 1950 and 1985 in 'year'
labels = year_labels,
limits=c(-2, 69) # Adjust to display labels from 1950-1985
)
all_scatter
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.