tests/testthat/_snaps/print.md

estimate_contrasts - by with special character

Code
  print(estimate_contrasts(fit, "c172code", "barthtot = [sd]", backend = "marginaleffects",
    p_adjust = "holm"), table_width = Inf, zap_small = TRUE)
Output
  Marginal Contrasts Analysis

  Level1 | Level2 | barthtot | Difference |   SE |        95% CI | t(810) |      p
  --------------------------------------------------------------------------------
  mid    | low    |    35.19 |      -0.22 | 0.42 | [-1.05, 0.60] |  -0.53 | > .999
  high   | low    |    35.19 |       0.22 | 0.56 | [-0.87, 1.31] |   0.40 | > .999
  high   | mid    |    35.19 |       0.45 | 0.49 | [-0.51, 1.40] |   0.92 | > .999
  mid    | low    |    64.79 |       0.17 | 0.31 | [-0.45, 0.79] |   0.54 | > .999
  high   | low    |    64.79 |       0.72 | 0.40 | [-0.06, 1.49] |   1.81 |  0.565
  high   | mid    |    64.79 |       0.55 | 0.33 | [-0.10, 1.19] |   1.65 |  0.691
  mid    | low    |    94.40 |       0.56 | 0.46 | [-0.34, 1.47] |   1.23 | > .999
  high   | low    |    94.40 |       1.21 | 0.59 | [ 0.05, 2.37] |   2.05 |  0.368
  high   | mid    |    94.40 |       0.65 | 0.48 | [-0.30, 1.60] |   1.34 | > .999

  Variable predicted: neg_c_7
  Predictors contrasted: c172code
  p-value adjustment method: Holm (1979)
Code
  print(estimate_contrasts(fit, c("c172code", "barthtot = [sd]"), backend = "marginaleffects",
  p_adjust = "holm"), table_width = Inf, zap_small = TRUE)
Output
  Marginal Contrasts Analysis

  Level1       | Level2       | Difference |   SE |         95% CI | t(810) |      p
  ----------------------------------------------------------------------------------
  low, 64.792  | low, 35.188  |      -1.93 | 0.27 | [-2.45, -1.40] |  -7.20 | < .001
  low, 94.396  | low, 35.188  |      -3.85 | 0.54 | [-4.90, -2.80] |  -7.20 | < .001
  mid, 35.188  | low, 35.188  |      -0.22 | 0.42 | [-1.05,  0.60] |  -0.53 | > .999
  mid, 64.792  | low, 35.188  |      -1.76 | 0.39 | [-2.52, -0.99] |  -4.52 | < .001
  mid, 94.396  | low, 35.188  |      -3.29 | 0.42 | [-4.11, -2.47] |  -7.90 | < .001
  high, 35.188 | low, 35.188  |       0.22 | 0.56 | [-0.87,  1.31] |   0.40 | > .999
  high, 64.792 | low, 35.188  |      -1.21 | 0.46 | [-2.11, -0.31] |  -2.65 |  0.099
  high, 94.396 | low, 35.188  |      -2.64 | 0.56 | [-3.74, -1.55] |  -4.73 | < .001
  low, 94.396  | low, 64.792  |      -1.93 | 0.27 | [-2.45, -1.40] |  -7.20 | < .001
  mid, 35.188  | low, 64.792  |       1.70 | 0.35 | [ 1.01,  2.40] |   4.81 | < .001
  mid, 64.792  | low, 64.792  |       0.17 | 0.31 | [-0.45,  0.79] |   0.54 | > .999
  mid, 94.396  | low, 64.792  |      -1.36 | 0.35 | [-2.04, -0.68] |  -3.93 |  0.001
  high, 35.188 | low, 64.792  |       2.15 | 0.51 | [ 1.15,  3.14] |   4.24 | < .001
  high, 64.792 | low, 64.792  |       0.72 | 0.40 | [-0.06,  1.49] |   1.81 |  0.636
  high, 94.396 | low, 64.792  |      -0.72 | 0.51 | [-1.71,  0.28] |  -1.41 | > .999
  mid, 35.188  | low, 94.396  |       3.63 | 0.46 | [ 2.72,  4.54] |   7.81 | < .001
  mid, 64.792  | low, 94.396  |       2.10 | 0.43 | [ 1.24,  2.95] |   4.82 | < .001
  mid, 94.396  | low, 94.396  |       0.56 | 0.46 | [-0.34,  1.47] |   1.23 | > .999
  high, 35.188 | low, 94.396  |       4.07 | 0.59 | [ 2.92,  5.23] |   6.91 | < .001
  high, 64.792 | low, 94.396  |       2.64 | 0.50 | [ 1.67,  3.62] |   5.32 | < .001
  high, 94.396 | low, 94.396  |       1.21 | 0.59 | [ 0.05,  2.37] |   2.05 |  0.450
  mid, 64.792  | mid, 35.188  |      -1.53 | 0.16 | [-1.84, -1.23] |  -9.80 | < .001
  mid, 94.396  | mid, 35.188  |      -3.07 | 0.31 | [-3.68, -2.45] |  -9.80 | < .001
  high, 35.188 | mid, 35.188  |       0.45 | 0.49 | [-0.51,  1.40] |   0.92 | > .999
  high, 64.792 | mid, 35.188  |      -0.99 | 0.37 | [-1.71, -0.26] |  -2.67 |  0.099
  high, 94.396 | mid, 35.188  |      -2.42 | 0.49 | [-3.38, -1.46] |  -4.95 | < .001
  mid, 94.396  | mid, 64.792  |      -1.53 | 0.16 | [-1.84, -1.23] |  -9.80 | < .001
  high, 35.188 | mid, 64.792  |       1.98 | 0.46 | [ 1.08,  2.88] |   4.32 | < .001
  high, 64.792 | mid, 64.792  |       0.55 | 0.33 | [-0.10,  1.19] |   1.65 |  0.789
  high, 94.396 | mid, 64.792  |      -0.89 | 0.46 | [-1.79,  0.02] |  -1.93 |  0.545
  high, 35.188 | mid, 94.396  |       3.51 | 0.48 | [ 2.57,  4.46] |   7.30 | < .001
  high, 64.792 | mid, 94.396  |       2.08 | 0.36 | [ 1.37,  2.79] |   5.74 | < .001
  high, 94.396 | mid, 94.396  |       0.65 | 0.48 | [-0.30,  1.60] |   1.34 | > .999
  high, 64.792 | high, 35.188 |      -1.43 | 0.32 | [-2.06, -0.81] |  -4.50 | < .001
  high, 94.396 | high, 35.188 |      -2.86 | 0.64 | [-4.11, -1.61] |  -4.50 | < .001
  high, 94.396 | high, 64.792 |      -1.43 | 0.32 | [-2.06, -0.81] |  -4.50 | < .001

  Variable predicted: neg_c_7
  Predictors contrasted: c172code, barthtot = [sd]
  p-value adjustment method: Holm (1979)
Code
  print(estimate_contrasts(fit, "c172code", "barthtot = [sd]", backend = "marginaleffects"),
  table_width = Inf, zap_small = TRUE)
Output
  Marginal Contrasts Analysis

  Level1 | Level2 | barthtot | Difference |   SE |        95% CI | t(810) |     p
  -------------------------------------------------------------------------------
  mid    | low    |    35.19 |      -0.22 | 0.42 | [-1.05, 0.60] |  -0.53 | 0.596
  high   | low    |    35.19 |       0.22 | 0.56 | [-0.87, 1.31] |   0.40 | 0.691
  high   | mid    |    35.19 |       0.45 | 0.49 | [-0.51, 1.40] |   0.92 | 0.360
  mid    | low    |    64.79 |       0.17 | 0.31 | [-0.45, 0.79] |   0.54 | 0.589
  high   | low    |    64.79 |       0.72 | 0.40 | [-0.06, 1.49] |   1.81 | 0.071
  high   | mid    |    64.79 |       0.55 | 0.33 | [-0.10, 1.19] |   1.65 | 0.099
  mid    | low    |    94.40 |       0.56 | 0.46 | [-0.34, 1.47] |   1.23 | 0.221
  high   | low    |    94.40 |       1.21 | 0.59 | [ 0.05, 2.37] |   2.05 | 0.041
  high   | mid    |    94.40 |       0.65 | 0.48 | [-0.30, 1.60] |   1.34 | 0.181

  Variable predicted: neg_c_7
  Predictors contrasted: c172code
  p-values are uncorrected.
Code
  print(estimate_contrasts(fit, c("c172code", "barthtot = [sd]"), backend = "marginaleffects"),
  table_width = Inf, zap_small = TRUE)
Output
  Marginal Contrasts Analysis

  Level1       | Level2       | Difference |   SE |         95% CI | t(810) |      p
  ----------------------------------------------------------------------------------
  low, 64.792  | low, 35.188  |      -1.93 | 0.27 | [-2.45, -1.40] |  -7.20 | < .001
  low, 94.396  | low, 35.188  |      -3.85 | 0.54 | [-4.90, -2.80] |  -7.20 | < .001
  mid, 35.188  | low, 35.188  |      -0.22 | 0.42 | [-1.05,  0.60] |  -0.53 |  0.596
  mid, 64.792  | low, 35.188  |      -1.76 | 0.39 | [-2.52, -0.99] |  -4.52 | < .001
  mid, 94.396  | low, 35.188  |      -3.29 | 0.42 | [-4.11, -2.47] |  -7.90 | < .001
  high, 35.188 | low, 35.188  |       0.22 | 0.56 | [-0.87,  1.31] |   0.40 |  0.691
  high, 64.792 | low, 35.188  |      -1.21 | 0.46 | [-2.11, -0.31] |  -2.65 |  0.008
  high, 94.396 | low, 35.188  |      -2.64 | 0.56 | [-3.74, -1.55] |  -4.73 | < .001
  low, 94.396  | low, 64.792  |      -1.93 | 0.27 | [-2.45, -1.40] |  -7.20 | < .001
  mid, 35.188  | low, 64.792  |       1.70 | 0.35 | [ 1.01,  2.40] |   4.81 | < .001
  mid, 64.792  | low, 64.792  |       0.17 | 0.31 | [-0.45,  0.79] |   0.54 |  0.589
  mid, 94.396  | low, 64.792  |      -1.36 | 0.35 | [-2.04, -0.68] |  -3.93 | < .001
  high, 35.188 | low, 64.792  |       2.15 | 0.51 | [ 1.15,  3.14] |   4.24 | < .001
  high, 64.792 | low, 64.792  |       0.72 | 0.40 | [-0.06,  1.49] |   1.81 |  0.071
  high, 94.396 | low, 64.792  |      -0.72 | 0.51 | [-1.71,  0.28] |  -1.41 |  0.160
  mid, 35.188  | low, 94.396  |       3.63 | 0.46 | [ 2.72,  4.54] |   7.81 | < .001
  mid, 64.792  | low, 94.396  |       2.10 | 0.43 | [ 1.24,  2.95] |   4.82 | < .001
  mid, 94.396  | low, 94.396  |       0.56 | 0.46 | [-0.34,  1.47] |   1.23 |  0.221
  high, 35.188 | low, 94.396  |       4.07 | 0.59 | [ 2.92,  5.23] |   6.91 | < .001
  high, 64.792 | low, 94.396  |       2.64 | 0.50 | [ 1.67,  3.62] |   5.32 | < .001
  high, 94.396 | low, 94.396  |       1.21 | 0.59 | [ 0.05,  2.37] |   2.05 |  0.041
  mid, 64.792  | mid, 35.188  |      -1.53 | 0.16 | [-1.84, -1.23] |  -9.80 | < .001
  mid, 94.396  | mid, 35.188  |      -3.07 | 0.31 | [-3.68, -2.45] |  -9.80 | < .001
  high, 35.188 | mid, 35.188  |       0.45 | 0.49 | [-0.51,  1.40] |   0.92 |  0.360
  high, 64.792 | mid, 35.188  |      -0.99 | 0.37 | [-1.71, -0.26] |  -2.67 |  0.008
  high, 94.396 | mid, 35.188  |      -2.42 | 0.49 | [-3.38, -1.46] |  -4.95 | < .001
  mid, 94.396  | mid, 64.792  |      -1.53 | 0.16 | [-1.84, -1.23] |  -9.80 | < .001
  high, 35.188 | mid, 64.792  |       1.98 | 0.46 | [ 1.08,  2.88] |   4.32 | < .001
  high, 64.792 | mid, 64.792  |       0.55 | 0.33 | [-0.10,  1.19] |   1.65 |  0.099
  high, 94.396 | mid, 64.792  |      -0.89 | 0.46 | [-1.79,  0.02] |  -1.93 |  0.055
  high, 35.188 | mid, 94.396  |       3.51 | 0.48 | [ 2.57,  4.46] |   7.30 | < .001
  high, 64.792 | mid, 94.396  |       2.08 | 0.36 | [ 1.37,  2.79] |   5.74 | < .001
  high, 94.396 | mid, 94.396  |       0.65 | 0.48 | [-0.30,  1.60] |   1.34 |  0.181
  high, 64.792 | high, 35.188 |      -1.43 | 0.32 | [-2.06, -0.81] |  -4.50 | < .001
  high, 94.396 | high, 35.188 |      -2.86 | 0.64 | [-4.11, -1.61] |  -4.50 | < .001
  high, 94.396 | high, 64.792 |      -1.43 | 0.32 | [-2.06, -0.81] |  -4.50 | < .001

  Variable predicted: neg_c_7
  Predictors contrasted: c172code, barthtot = [sd]
  p-values are uncorrected.

estimate_means - by is list

Code
  print(estimate_means(fit, list(c172code = c("low", "high"), c161sex = c(
    "Female", "Male")), backend = "marginaleffects"), table_width = Inf,
  zap_small = TRUE)
Output
  Estimated Marginal Means

  c172code | c161sex |  Mean |   SE |         95% CI | t(825)
  -----------------------------------------------------------
  low      | Female  | 12.13 | 0.33 | [11.48, 12.78] |  36.44
  high     | Female  | 12.73 | 0.38 | [11.98, 13.48] |  33.31
  low      | Male    | 11.09 | 0.61 | [ 9.89, 12.28] |  18.25
  high     | Male    | 11.77 | 0.58 | [10.64, 12.90] |  20.45

  Variable predicted: neg_c_7
  Predictors modulated: c172code = c('low', 'high'), c161sex = c('Female', 'Male')
  Predictors averaged: e16sex
Code
  print(estimate_means(fit, c("c172code = c('low', 'high')",
    "c161sex = c('Female', 'Male')"), backend = "marginaleffects"), table_width = Inf,
  zap_small = TRUE)
Output
  Estimated Marginal Means

  c172code | c161sex |  Mean |   SE |         95% CI | t(825)
  -----------------------------------------------------------
  low      | Female  | 12.13 | 0.33 | [11.48, 12.78] |  36.44
  high     | Female  | 12.73 | 0.38 | [11.98, 13.48] |  33.31
  low      | Male    | 11.09 | 0.61 | [ 9.89, 12.28] |  18.25
  high     | Male    | 11.77 | 0.58 | [10.64, 12.90] |  20.45

  Variable predicted: neg_c_7
  Predictors modulated: c172code = c('low', 'high'), c161sex = c('Female', 'Male')
  Predictors averaged: e16sex

estimate_epectation - don't print empty RE columns

Code
  print(estimate_expectation(m, by = "spp", predict = "conditional"), zap_small = TRUE)
Output
  Model-based Predictions

  spp   | Predicted |   SE |           CI
  ---------------------------------------
  GP    |      0.73 | 0.21 | [0.32, 1.14]
  PR    |      0.42 | 0.16 | [0.11, 0.72]
  DM    |      0.94 | 0.25 | [0.45, 1.43]
  EC-A  |      0.60 | 0.19 | [0.24, 0.96]
  EC-L  |      1.42 | 0.37 | [0.69, 2.14]
  DES-L |      1.34 | 0.36 | [0.63, 2.04]
  DF    |      0.78 | 0.21 | [0.37, 1.19]

  Variable predicted: count
  Predictors modulated: spp
  Predictors controlled: mined (yes)
  Predictions are on the conditional-scale.

print - layouts and include data grid

Code
  print(out)
Output
  Estimated Marginal Means

  Species    | Mean |   SE |       95% CI | t(147)
  ------------------------------------------------
  setosa     | 1.46 | 0.06 | [1.34, 1.58] |  24.02
  versicolor | 4.26 | 0.06 | [4.14, 4.38] |  70.00
  virginica  | 5.55 | 0.06 | [5.43, 5.67] |  91.23

  Variable predicted: Petal.Length
  Predictors modulated: Species
Code
  print(out, select = "minimal")
Output
  Estimated Marginal Means

  Species    |         Mean (CI)
  ------------------------------
  setosa     | 1.46 (1.34, 1.58)
  versicolor | 4.26 (4.14, 4.38)
  virginica  | 5.55 (5.43, 5.67)

  Variable predicted: Petal.Length
  Predictors modulated: Species
Code
  print(out, select = "minimal")
Output
  Marginal Contrasts Analysis

  Level1     | Level2     |   Difference (CI) |      p
  ----------------------------------------------------
  versicolor | setosa     | 2.80 (2.63, 2.97) | <0.001
  virginica  | setosa     | 4.09 (3.92, 4.26) | <0.001
  virginica  | versicolor | 1.29 (1.12, 1.46) | <0.001

  Variable predicted: Petal.Length
  Predictors contrasted: Species
  p-values are uncorrected.
Code
  print(out, select = "{estimate}{stars}|{ci}")
Output
  Marginal Contrasts Analysis

  Level1     | Level2     | Difference |         CI
  -------------------------------------------------
  versicolor | setosa     |    2.80*** | 2.63, 2.97
  virginica  | setosa     |    4.09*** | 3.92, 4.26
  virginica  | versicolor |    1.29*** | 1.12, 1.46

  Variable predicted: Petal.Length
  Predictors contrasted: Species
  p-values are uncorrected.
Code
  print(estimate_relation(m, by = "qsec"))
Output
  Model-based Predictions

  qsec  | Predicted |   SE |       95% CI
  ---------------------------------------
  14.50 |      2.80 | 0.19 | [2.41, 3.18]
  15.43 |      2.91 | 0.15 | [2.62, 3.21]
  16.37 |      3.03 | 0.11 | [2.81, 3.26]
  17.30 |      3.15 | 0.09 | [2.97, 3.32]
  18.23 |      3.27 | 0.08 | [3.10, 3.44]
  19.17 |      3.38 | 0.10 | [3.17, 3.60]
  20.10 |      3.50 | 0.14 | [3.21, 3.78]
  21.03 |      3.62 | 0.18 | [3.25, 3.98]
  21.97 |      3.73 | 0.22 | [3.28, 4.19]
  22.90 |      3.85 | 0.27 | [3.30, 4.40]

  Variable predicted: wt
  Predictors modulated: qsec
  Predictors controlled: mpg (20)
Code
  print(estimate_relation(m, by = "qsec"), include_grid = TRUE)
Output
  Model-based Predictions

  qsec  |   mpg | Predicted |   SE |       95% CI
  -----------------------------------------------
  14.50 | 20.09 |      2.80 | 0.19 | [2.41, 3.18]
  15.43 | 20.09 |      2.91 | 0.15 | [2.62, 3.21]
  16.37 | 20.09 |      3.03 | 0.11 | [2.81, 3.26]
  17.30 | 20.09 |      3.15 | 0.09 | [2.97, 3.32]
  18.23 | 20.09 |      3.27 | 0.08 | [3.10, 3.44]
  19.17 | 20.09 |      3.38 | 0.10 | [3.17, 3.60]
  20.10 | 20.09 |      3.50 | 0.14 | [3.21, 3.78]
  21.03 | 20.09 |      3.62 | 0.18 | [3.25, 3.98]
  21.97 | 20.09 |      3.73 | 0.22 | [3.28, 4.19]
  22.90 | 20.09 |      3.85 | 0.27 | [3.30, 4.40]

  Variable predicted: wt
  Predictors modulated: qsec
  Predictors controlled: mpg (20)


easystats/estimate documentation built on April 5, 2025, 1:36 p.m.