tests/testthat/_snaps/windows/estimate_contrasts_effectsize.md

estimate_contrasts - emmeans backend

Code
  estimate_contrasts(model, backend = "emmeans")
Message
  No variable was specified for contrast estimation. Selecting `contrast =
    "Species"`.
Output
  Marginal Contrasts Analysis

  Level1     | Level2     | Difference |         95% CI |   SE | t(147) |      p
  ------------------------------------------------------------------------------
  setosa     | versicolor |       0.66 | [ 0.52,  0.79] | 0.07 |   9.69 | < .001
  setosa     | virginica  |       0.45 | [ 0.32,  0.59] | 0.07 |   6.68 | < .001
  versicolor | virginica  |      -0.20 | [-0.34, -0.07] | 0.07 |  -3.00 |  0.003

  Variable predicted: Sepal.Width
  Predictors contrasted: Species
  p-values are uncorrected.
Code
  estimate_contrasts(model, effectsize = "none", backend = "emmeans")
Message
  No variable was specified for contrast estimation. Selecting `contrast =
    "Species"`.
Output
  Marginal Contrasts Analysis

  Level1     | Level2     | Difference |         95% CI |   SE | t(147) |      p
  ------------------------------------------------------------------------------
  setosa     | versicolor |       0.66 | [ 0.52,  0.79] | 0.07 |   9.69 | < .001
  setosa     | virginica  |       0.45 | [ 0.32,  0.59] | 0.07 |   6.68 | < .001
  versicolor | virginica  |      -0.20 | [-0.34, -0.07] | 0.07 |  -3.00 |  0.003

  Variable predicted: Sepal.Width
  Predictors contrasted: Species
  p-values are uncorrected.
Code
  estimate_contrasts(model, effectsize = "emmeans", backend = "emmeans")
Message
  No variable was specified for contrast estimation. Selecting `contrast =
    "Species"`.
Output
  Marginal Contrasts Analysis

  Level1     | Level2     | Difference |         95% CI |   SE | t(147) |      p
  ------------------------------------------------------------------------------
  setosa     | versicolor |       0.66 | [ 0.52,  0.79] | 0.07 |   9.69 | < .001
  setosa     | virginica  |       0.45 | [ 0.32,  0.59] | 0.07 |   6.68 | < .001
  versicolor | virginica  |      -0.20 | [-0.34, -0.07] | 0.07 |  -3.00 |  0.003

  Level1     | partial_d |      es 95% CI
  ---------------------------------------
  setosa     |      1.94 | [ 1.48,  2.39]
  setosa     |      1.34 | [ 0.91,  1.76]
  versicolor |     -0.60 | [-1.00, -0.20]

  Variable predicted: Sepal.Width
  Predictors contrasted: Species
  p-values are uncorrected.
Code
  estimate_contrasts(model, effectsize = "marginal", backend = "emmeans")
Message
  No variable was specified for contrast estimation. Selecting `contrast =
    "Species"`.
Output
  Marginal Contrasts Analysis

  Level1     | Level2     | Difference |         95% CI |   SE | t(147) |      p | marginal_d
  -------------------------------------------------------------------------------------------
  setosa     | versicolor |       0.66 | [ 0.52,  0.79] | 0.07 |   9.69 | < .001 |       1.16
  setosa     | virginica  |       0.45 | [ 0.32,  0.59] | 0.07 |   6.68 | < .001 |       0.80
  versicolor | virginica  |      -0.20 | [-0.34, -0.07] | 0.07 |  -3.00 |  0.003 |      -0.36

  Variable predicted: Sepal.Width
  Predictors contrasted: Species
  p-values are uncorrected.
Code
  estimate_contrasts(model, effectsize = "boot", backend = "emmeans")
Message
  No variable was specified for contrast estimation. Selecting `contrast =
    "Species"`.
Output
  Marginal Contrasts Analysis

  Level1     | Level2     | Difference |         95% CI |   SE | t(147) |      p
  ------------------------------------------------------------------------------
  setosa     | versicolor |       0.66 | [ 0.52,  0.79] | 0.07 |   9.69 | < .001
  setosa     | virginica  |       0.45 | [ 0.32,  0.59] | 0.07 |   6.68 | < .001
  versicolor | virginica  |      -0.20 | [-0.34, -0.07] | 0.07 |  -3.00 |  0.003

  Level1     | Cohen's d | Cohen's d 95% CI
  -----------------------------------------
  setosa     |      1.94 |   [ 1.52,  2.39]
  setosa     |      1.34 |   [ 0.82,  1.72]
  versicolor |     -0.60 |   [-0.92, -0.22]

  Variable predicted: Sepal.Width
  Predictors contrasted: Species
  p-values are uncorrected.
Code
  estimate_contrasts(model, effectsize = "boot", es_type = "akp.robust.d",
    backend = "emmeans")
Message
  No variable was specified for contrast estimation. Selecting `contrast =
    "Species"`.
Output
  Marginal Contrasts Analysis

  Level1     | Level2     | Difference |         95% CI |   SE | t(147) |      p
  ------------------------------------------------------------------------------
  setosa     | versicolor |       0.66 | [ 0.52,  0.79] | 0.07 |   9.69 | < .001
  setosa     | virginica  |       0.45 | [ 0.32,  0.59] | 0.07 |   6.68 | < .001
  versicolor | virginica  |      -0.20 | [-0.34, -0.07] | 0.07 |  -3.00 |  0.003

  Level1     | Robust Cohen's d | Robust Cohen's d 95% CI
  -------------------------------------------------------
  setosa     |             1.88 |          [ 1.42,  2.49]
  setosa     |             1.37 |          [ 0.92,  1.78]
  versicolor |            -0.51 |          [-0.90, -0.17]

  Variable predicted: Sepal.Width
  Predictors contrasted: Species
  p-values are uncorrected.
Code
  estimate_contrasts(model, effectsize = "boot", es_type = "hedges.g", backend = "emmeans")
Message
  No variable was specified for contrast estimation. Selecting `contrast =
    "Species"`.
Output
  Marginal Contrasts Analysis

  Level1     | Level2     | Difference |         95% CI |   SE | t(147) |      p
  ------------------------------------------------------------------------------
  setosa     | versicolor |       0.66 | [ 0.52,  0.79] | 0.07 |   9.69 | < .001
  setosa     | virginica  |       0.45 | [ 0.32,  0.59] | 0.07 |   6.68 | < .001
  versicolor | virginica  |      -0.20 | [-0.34, -0.07] | 0.07 |  -3.00 |  0.003

  Level1     | Hedges' g | Hedges' g 95% CI
  -----------------------------------------
  setosa     |      1.93 |   [ 1.51,  2.38]
  setosa     |      1.33 |   [ 0.82,  1.71]
  versicolor |     -0.60 |   [-0.91, -0.22]

  Variable predicted: Sepal.Width
  Predictors contrasted: Species
  p-values are uncorrected.

estimate_contrasts - marginaleffects backend

Code
  estimate_contrasts(model, backend = "marginaleffects")
Message
  We selected `contrast=c("Species")`.
Output
  Marginal Contrasts Analysis

  Level1     | Level2     | Difference |   SE |         95% CI | t(147) |      p
  ------------------------------------------------------------------------------
  versicolor | setosa     |      -0.66 | 0.07 | [-0.79, -0.52] |  -9.69 | < .001
  virginica  | setosa     |      -0.45 | 0.07 | [-0.59, -0.32] |  -6.68 | < .001
  virginica  | versicolor |       0.20 | 0.07 | [ 0.07,  0.34] |   3.00 |  0.003

  Variable predicted: Sepal.Width
  Predictors contrasted: Species
  p-values are uncorrected.
Code
  estimate_contrasts(model, effectsize = "none", backend = "marginaleffects")
Message
  We selected `contrast=c("Species")`.
Output
  Marginal Contrasts Analysis

  Level1     | Level2     | Difference |   SE |         95% CI | t(147) |      p
  ------------------------------------------------------------------------------
  versicolor | setosa     |      -0.66 | 0.07 | [-0.79, -0.52] |  -9.69 | < .001
  virginica  | setosa     |      -0.45 | 0.07 | [-0.59, -0.32] |  -6.68 | < .001
  virginica  | versicolor |       0.20 | 0.07 | [ 0.07,  0.34] |   3.00 |  0.003

  Variable predicted: Sepal.Width
  Predictors contrasted: Species
  p-values are uncorrected.
Code
  estimate_contrasts(model, effectsize = "marginal", backend = "marginaleffects")
Message
  We selected `contrast=c("Species")`.
Output
  Marginal Contrasts Analysis

  Level1     | Level2     | Difference |   SE |         95% CI | t(147) |      p | marginal_d
  -------------------------------------------------------------------------------------------
  versicolor | setosa     |      -0.66 | 0.07 | [-0.79, -0.52] |  -9.69 | < .001 |      -1.16
  virginica  | setosa     |      -0.45 | 0.07 | [-0.59, -0.32] |  -6.68 | < .001 |      -0.80
  virginica  | versicolor |       0.20 | 0.07 | [ 0.07,  0.34] |   3.00 |  0.003 |       0.36

  Variable predicted: Sepal.Width
  Predictors contrasted: Species
  p-values are uncorrected.


easystats/estimate documentation built on April 5, 2025, 1:36 p.m.