library(knitr) options(knitr.kable.NA = "") knitr::opts_chunk$set(comment = ">", dpi = 300) options(digits = 2) if (!requireNamespace("ggplot2", quietly = TRUE) || !requireNamespace("mgcv", quietly = TRUE) || !requireNamespace("see", quietly = TRUE)) { knitr::opts_chunk$set(eval = FALSE) } set.seed(333)
This vignette will present how to visualize the effects and interactions using
estimate_relation()
.
Note that the statistically correct name of estimate_relation
is estimate_expectation
(which can be used as an alias), as it refers to expected predictions (read more).
library(modelbased) model <- lm(Sepal.Length ~ Sepal.Width, data = iris) visualization_data <- estimate_relation(model) head(visualization_data)
library(ggplot2) plot(visualization_data, line = list(color = "red")) + theme_minimal()
lm(Sepal.Length ~ poly(Sepal.Width, 2), data = iris) |> modelbased::estimate_relation(length = 50) |> plot()
library(mgcv) mgcv::gam(Sepal.Length ~ s(Sepal.Width), data = iris) |> modelbased::estimate_relation(length = 50) |> plot()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.