get_varcov | R Documentation |
Returns the variance-covariance, as retrieved by stats::vcov()
, but works
for more model objects that probably don't provide a vcov()
-method.
get_varcov(x, ...)
## Default S3 method:
get_varcov(x, verbose = TRUE, vcov = NULL, vcov_args = NULL, ...)
## S3 method for class 'glmgee'
get_varcov(
x,
verbose = TRUE,
vcov = c("robust", "df-adjusted", "model", "bias-corrected", "jackknife"),
...
)
## S3 method for class 'nestedLogit'
get_varcov(
x,
component = "all",
verbose = TRUE,
vcov = NULL,
vcov_args = NULL,
...
)
## S3 method for class 'betareg'
get_varcov(
x,
component = c("conditional", "precision", "all"),
verbose = TRUE,
...
)
## S3 method for class 'clm2'
get_varcov(x, component = c("all", "conditional", "scale"), ...)
## S3 method for class 'truncreg'
get_varcov(x, component = c("conditional", "all"), verbose = TRUE, ...)
## S3 method for class 'hurdle'
get_varcov(
x,
component = c("conditional", "zero_inflated", "zi", "all"),
vcov = NULL,
vcov_args = NULL,
verbose = TRUE,
...
)
## S3 method for class 'glmmTMB'
get_varcov(
x,
component = c("conditional", "zero_inflated", "zi", "dispersion", "all"),
verbose = TRUE,
...
)
## S3 method for class 'MixMod'
get_varcov(
x,
effects = c("fixed", "random"),
component = c("conditional", "zero_inflated", "zi", "dispersion", "auxiliary", "all"),
verbose = TRUE,
...
)
## S3 method for class 'brmsfit'
get_varcov(x, component = "conditional", verbose = TRUE, ...)
## S3 method for class 'betamfx'
get_varcov(
x,
component = c("conditional", "precision", "all"),
verbose = TRUE,
...
)
## S3 method for class 'aov'
get_varcov(x, complete = FALSE, verbose = TRUE, ...)
## S3 method for class 'mixor'
get_varcov(x, effects = c("all", "fixed", "random"), verbose = TRUE, ...)
x |
A model. |
... |
Currently not used. |
verbose |
Toggle warnings. |
vcov |
Variance-covariance matrix used to compute uncertainty estimates (e.g., for robust standard errors). This argument accepts a covariance matrix, a function which returns a covariance matrix, or a string which identifies the function to be used to compute the covariance matrix.
|
vcov_args |
List of arguments to be passed to the function identified by
the |
component |
Should the complete variance-covariance matrix of the model
be returned, or only for specific model components only (like count or
zero-inflated model parts)? Applies to models with zero-inflated component,
or models with precision (e.g. |
effects |
Should the complete variance-covariance matrix of the model
be returned, or only for specific model parameters only? Currently only
applies to models of class |
complete |
Logical, if |
The variance-covariance matrix, as matrix
-object.
get_varcov()
tries to return the nearest positive definite matrix
in case of negative eigenvalues of the variance-covariance matrix. This
ensures that it is still possible, for instance, to calculate standard
errors of model parameters. A message is shown when the matrix is negative
definite and a corrected matrix is returned.
data(mtcars)
m <- lm(mpg ~ wt + cyl + vs, data = mtcars)
get_varcov(m)
# vcov of zero-inflation component from hurdle-model
data("bioChemists", package = "pscl")
mod <- hurdle(art ~ phd + fem | ment, data = bioChemists, dist = "negbin")
get_varcov(mod, component = "zero_inflated")
# robust vcov of, count component from hurdle-model
data("bioChemists", package = "pscl")
mod <- hurdle(art ~ phd + fem | ment, data = bioChemists, dist = "negbin")
get_varcov(
mod,
component = "conditional",
vcov = "BS",
vcov_args = list(R = 50)
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.