dst_mle | R Documentation |
Maximum Likelihood Evaluation (MLE) using Diagonal Super-tile (DST) method
dst_mle(
data = list(x, y, z),
kernel = c("ugsm-s", "ugsmn-s", "bgsfm-s", "bgspm-s", "tgspm-s", "ugsm-st", "bgsm-st"),
dst_band = 2,
dmetric = c("euclidean", "great_circle"),
optimization = list(clb = c(0.001, 0.001, 0.001), cub = c(5, 5, 5), tol = 1e-04,
max_iters = 100)
)
data |
A list of x vector (x-dim), y vector (y-dim), and z observation vector |
dst_band |
A number - Diagonal Super-Tile (DST) diagonal thick |
dmetric |
A string - distance metric - "euclidean" or "great_circle" |
optimization |
A list of opt lb (clb), opt ub (cub), tol, max_iters |
kernel: |
string - kernel ("ugsm-s", "ugsmn-s", "bgsfm-s", "bgspm-s", "tgspm-s", "ugsm-st", "bgsm-st") |
vector of three values (theta1, theta2, theta3)
seed <- 0 ## Initial seed to generate XY locs.
dmetric <- "euclidean" ## "euclidean" or "great_circle" distance.
n <- 900 ## The number of locations (n must be a square number, n=m^2).
dst_band <- 3 ## Number of used Diagonal Super Tile (DST).
kernel <- "ugsm-s"
theta <- c(1, 0.1, 0.5) #Params vector.
exageostat_init(hardware = list(ncores = 4, ngpus = 0, ts = 320, lts = 0, pgrid = 1, qgrid = 1)) ## Initiate exageostat instance
data <- simulate_data_exact(kernel, theta, dmetric, n, seed) ## Generate Z observation vector
## Estimate MLE parameters (TLR approximation)
result <- dst_mle(data, kernel, dst_band, dmetric, optimization = list(clb = c(0.001, 0.001, 0.001), cub = c(5, 5, 5), tol = 1e-4, max_iters = 4))
print(result)
exageostat_finalize() ## Finalize exageostat instance
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.