tlr_mle | R Documentation |
Maximum Likelihood Evaluation (MLE) using Tile Low-Rank (TLR) method
tlr_mle(
data = list(x, y, z),
kernel = c("ugsm-s", "ugsmn-s", "bgsfm-s", "bgspm-s", "tgspm-s", "ugsm-st", "bgsm-st"),
tlr_acc = 9,
tlr_maxrank = 400,
dmetric = c("euclidean", "great_circle"),
optimization = list(clb = c(0.001, 0.001, 0.001), cub = c(5, 5, 5), tol = 1e-04,
max_iters = 100)
)
data |
A list of x vector (x-dim), y vector (y-dim), and z observation vector |
tlr_acc |
A number - TLR accuracy level |
tlr_maxrank |
A string - TLR max rank |
dmetric |
A string - distance metric - "euclidean" or "great_circle" |
optimization |
A list of opt lb values (clb), opt ub values (cub), tol, max_iters |
kernel: |
string - kernel ("ugsm-s", "ugsmn-s", "bgsfm-s", "bgspm-s", "tgspm-s", "ugsm-st", "bgsm-st") |
vector of three values (theta1, theta2, theta3)
seed <- 0 ## Initial seed to generate XY locs.
kernel <- "ugsm-s"
theta <- c(1, 0.1, 0.5) #Params vector.
dmetric <- "euclidean" ## "euclidean" or "great_circle" distance.
n <- 900 ## The number of locations (n must be a square number, n=m^2).
tlr_acc <- 7 ## Approximation accuracy 10^-(acc)
tlr_maxrank <- 150 ## Max Rank
exageostat_init(hardware = list(ncores = 2, ngpus = 0, ts = 320, lts = 1000, pgrid = 1, qgrid = 1)) ## Initiate exageostat instance
data <- simulate_data_exact(kernel, theta, dmetric, n, seed) ## Generate Z observation vector
## Estimate MLE parameters (TLR approximation)
result <- tlr_mle(data, kernel, tlr_acc, tlr_maxrank, dmetric, optimization = list(clb = c(0.001, 0.001, 0.001), cub = c(5, 5, 5), tol = 1e-4, max_iters = 4))
print(result)
exageostat_finalize() ## Finalize exageostat instance
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.