Description Usage Arguments Value References Examples
Performs a permutation test based on the IPCW distance covariance.
1 2 3 4 5 6 7 8 9 10 11 12 | ipcw.dcov.test(
Y,
X,
affine = FALSE,
standardize = FALSE,
timetrafo = "none",
type.X = "sample",
metr.X = "euclidean",
use = "all",
cutoff = NULL,
B = 499
)
|
Y |
A column with two rows, where the first row contains the survival times and the second row the status indicators (a survival object will work). |
X |
A vector or matrix containing the covariate information. |
affine |
logical; indicates if X should be transformed such that the result is invariant under affine transformations of X |
standardize |
logical; should X be standardized using the standard deviations of single observations?. No effect when affine = TRUE. |
timetrafo |
specifies a transformation applied on the follow-up times. Can be "none", "log" or a user-specified function. |
type.X |
For "distance", X is interpreted as a distance matrix. For "sample" (or any other value), X is intepreted as a sample |
metr.X |
etr.X specifies the metric which should be used for X to analyse the distance covariance. Options are "euclidean", "discrete", "alpha", "minkowski", "gauss", "gaussauto" and "boundsq". For "alpha", "minkowski", "gauss", "gaussauto" and "boundsq", the corresponding parameters are specified via "c(metric,parameter)" (see examples); the standard parameter is 2 for "minkowski" and "1" for all other metrics. |
cutoff |
If provided, all survival times larger than cutoff are set to the cutoff and all corresponding status indicators are set to one. Under most circumstances, choosing a cutoff is highly recommended. |
B |
The number of permutations used for the permutation test |
An list with two arguments, $dcov contains the IPCW distance covariance, $pvalue the corresponding p-value
bottcher2017detectingdcortools
\insertRefdatta2010inversedcortools
\insertRefdueck2014affinelydcortools
\insertRefhuo2016fastdcortools
\insertReflyons2013distancedcortools
\insertRefsejdinovic2013equivalencedcortools
\insertRefszekely2007dcortools
\insertRefszekely2009browniandcortools
1 2 3 4 5 6 7 8 | X <- rnorm(100)
survtime <- rgamma(100,abs(X))
cens <- rexp(100)
status <- as.numeric(survtime<cens)
time <- sapply(1:100, function(u) min(survtime[u], cens[u]))
surv <- cbind(time,status)
ipcw.dcov.test(surv, X)
ipcw.dcov.test(surv, X, cutoff = quantile(time,0.8)) # often better performance when using a cutoff time
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.