plotHist | R Documentation |
Plot histogram of p-values or q-values for each plate or all plates together
plotHist(plotMatrix, plotRows = NULL, plotCols = NULL, plotAll = FALSE, plotSep = TRUE, plotName = NULL, colNames = NULL, ...)
plotMatrix |
Data frame or numeric matrix consisting only of p-values or q-values. Columns are samples, and rows are plate wells. |
plotRows, plotCols |
Optional integer vector. Indicate which row/column numbers from the plotMatrix should be plotted. If NULL then all rows/columns from the plotMatrix are used. |
plotAll |
Optional logical. Should all p-values or q-values be plotted together? Default is FALSE. |
plotSep |
Optional logical. If plotAll is FALSE, should plots be presented in separate windows? Default is TRUE. |
plotName |
Optional. Name of plotMatrix for plot title. |
colNames |
Optional. If plotAll is FALSE, names of plotCols for plot titles. |
... |
Optional. Additional parameters passed to |
Histograms can be used to compare actual to expected p-value distributions obtained from statistical tests of replicated features. In the presence of rare biological events, the p-value distribution should be approximately uniformly distributed with somewhat more small p-values. Deviations from these patterns indicate that the activity measurements are incorrect and/or that the statistical model is incorrectly specified.
Modifiable ggplot2 object or list of objects
If using output from statT
, statRVM
, statFDR
or statSights
, please only select the plotCols corresponding to p-value and/or q-value columns, i.e., every 5th and/or 6th column in that output. Also, the x-axis label is derived from these column names indicating either 'p-values' or 'q-values'.
Other graphical devices: plot3d
,
plotAutoco
, plotBox
,
plotHeatmap
, plotIGFit
,
plotScatter
## load dataset data(ex_dataMatrix) ## normalize data matrix using any method and store in new variable ex_normMatrix <- normZ(dataMatrix = ex_dataMatrix, dataCols = 5:10) ## apply any test to normalized data and store in new variable ex_testMatrix <- statRVM(normMatrix = ex_normMatrix, repIndex = c(1,1,1,2,2,2)) ## plot p-value data by selecting the p-value columns from test result matrix plotHist(plotMatrix = ex_testMatrix, plotCols = c(5,10), plotName = 'Example', colNames = c('Set_A', 'Set_B'))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.