c_PAM: Partitioning Around Medoids

View source: R/c_PAM.R

c_PAMR Documentation

Partitioning Around Medoids

Description

Perform PAM clustering using cluster::pam

Usage

c_PAM(
  x,
  k = 2,
  diss = FALSE,
  metric = "euclidean",
  do.swap = TRUE,
  verbose = TRUE,
  ...
)

Arguments

x

Input matrix / data.frame

k

Integer: Number of clusters to get

diss

Logical: If TRUE, x should be a dist or dissimilarity matrix. Otherwise, x should be a matrix of cases by features. Default = FALSE

metric

Character: Dissimilarity metric to be used. Options: 'euclidean', 'manhattan'

do.swap

Logical: If TRUE, perform the swap phase (See cluster::pam), as in the original PAM algorithm. This is computationally intensive and can be skipped. Default = TRUE

verbose

Logical: If TRUE, print messages to screen

...

Additional parameters to be passed to cluster::pam

Author(s)

E.D. Gennatas

See Also

Other Clustering: c_CMeans(), c_DBSCAN(), c_EMC(), c_H2OKMeans(), c_HARDCL(), c_HOPACH(), c_KMeans(), c_MeanShift(), c_NGAS(), c_PAMK(), c_SPEC()


egenn/rtemis documentation built on Oct. 28, 2024, 6:30 a.m.