c_PAMK | R Documentation |
Estimate
PAM clustering
solution and optimal k using fpc::pamk
c_PAMK(
x,
krange = 2:10,
criterion = "asw",
usepam = ifelse(nrow(x) < 2000, TRUE, FALSE),
scaling = TRUE,
diss = inherits(data, "dist"),
metric = "euclidean",
do.swap = TRUE,
trace = 0,
verbose = TRUE,
...
)
x |
Input matrix / data.frame |
krange |
Integer vector: Range of k values to try |
criterion |
Character: Criterion to use for selecting k: "asw",
"multiasw" or "ch". See |
usepam |
Logical: If TRUE, use |
scaling |
Logical or Numeric vector: If TRUE, scale input. If numeric vector of length equal to number of features, the features are divided by the corresponding value. |
diss |
Logical: If TRUE, treat |
metric |
Character: Dissimilarity metric to be used. Options: 'euclidean', 'manhattan' |
do.swap |
Logical: If TRUE, perform the swap phase. See |
trace |
Integer [0, 3]: Trace level for |
verbose |
Logical: If TRUE, print messages to console |
... |
Additional parameters to be passed to |
rtClust
object
E.D. Gennatas
Other Clustering:
c_CMeans()
,
c_DBSCAN()
,
c_EMC()
,
c_H2OKMeans()
,
c_HARDCL()
,
c_HOPACH()
,
c_KMeans()
,
c_MeanShift()
,
c_NGAS()
,
c_PAM()
,
c_SPEC()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.