c_SPEC | R Documentation |
Perform Spectral Clustering
using kernlab::specc
c_SPEC(
x,
k = 2,
kernel = "rbfdot",
kpar = "automatic",
nystrom.red = FALSE,
nystrom.sample = dim(x)[1]/6,
iterations = 200,
mod.sample = 0.75,
na.action = na.omit,
verbose = TRUE,
...
)
x |
Input matrix / data.frame |
k |
Integer: Number of clusters to get |
kernel |
Character: Kernel to use: "rbfdot", "polydot", "vanilladot", tanhdot", "laplacedot", "besseldot", "anovadot", "splinedot", "stringdot" |
kpar |
String OR List: "automatic", "local" OR list with: sigma (for "rbfdor", "laplacedot"); degree, scale, offset (for "polydot"); scale, offset (for "tanhdot"); sigma, order, degree (for "besseldot"); sigma, degree (for "anovadot"); length, lambda, normalized (for "stringdot") |
nystrom.red |
Logical: if TRUE, use nystrom method to calculate eigenvectors (Default = FALSE) |
nystrom.sample |
Integer: Number of points to use for estimating the eigenvalues when |
iterations |
Integer: Number of iterations allowed |
mod.sample |
Float (0, 1): Proportion of data to use when estimating sigma. Default = .75 |
na.action |
Function: Action to perform on NA (Default = |
verbose |
Logical: If TRUE, print messages to screen |
... |
Additional parameters to be passed to |
E.D. Gennatas
Other Clustering:
c_CMeans()
,
c_DBSCAN()
,
c_EMC()
,
c_H2OKMeans()
,
c_HARDCL()
,
c_HOPACH()
,
c_KMeans()
,
c_MeanShift()
,
c_NGAS()
,
c_PAM()
,
c_PAMK()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.