d_ICA | R Documentation |
Perform ICA decomposition using the fastICA algorithm in fastICA::fastICA
or
ica::fastica
d_ICA(
x,
k = 3,
package = c("fastICA", "ica"),
alg.type = "parallel",
maxit = 100,
scale = TRUE,
center = TRUE,
verbose = TRUE,
trace = 0,
...
)
x |
Input data |
k |
Integer vector of length 1 or greater. Rank of decomposition |
package |
Character: Which package to use for ICA. "fastICA" will
use |
alg.type |
Character: For |
maxit |
Integer: Maximum N of iterations |
scale |
Logical: If TRUE, scale input data before decomposition. |
center |
Logical: If TRUE, also center input data if |
verbose |
Logical: If TRUE, print messages to screen. Default = TRUE |
trace |
Integer: If > 0, print messages during ICA run. Default = 0 |
... |
Additional parameters to be passed to |
Project scaled variables to ICA components. Input must be n by p, where n represents number of cases, and p represents number of features. fastICA will be applied to the transpose of the n x p matrix. fastICA will fail if there are any NA values or constant features: remove them using preprocess
rtDecom
object
E.D. Gennatas
Other Decomposition:
d_H2OAE()
,
d_H2OGLRM()
,
d_Isomap()
,
d_KPCA()
,
d_LLE()
,
d_MDS()
,
d_NMF()
,
d_PCA()
,
d_SPCA()
,
d_SVD()
,
d_TSNE()
,
d_UMAP()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.