d_KPCA | R Documentation |
Perform kernel PCA decomposition using kernlab::kpca
d_KPCA(
x,
x.test = NULL,
k = 2,
th = 1e-04,
kernel = "rbfdot",
kpar = NULL,
center = TRUE,
scale = TRUE,
verbose = TRUE,
...
)
x |
Input data |
x.test |
Optional test set. Will be projected on to KPCA basis |
k |
Integer vector of length 1 or greater. N of components to return
If set to 0, |
th |
Threshold for eigenvalue below which PCs are ignored if |
kernel |
Character: Type of kernel to use. See |
kpar |
List of hyperparameters: See |
center |
Logical: If TRUE, center data prior to decomposition. Default = TRUE |
scale |
Logical: If TRUE, scale data prior to decomposition. Default = TRUE |
verbose |
Logical: If TRUE, print messages to screen. Default = TRUE |
... |
Additional parameters to be passed to |
Project scaled variables to KPCA components. Input must be n by p, where n represents number of cases, and p represents number of features. KPCA will be applied to the transpose of the n x p matrix.
rtDecom
object
E.D. Gennatas
Other Decomposition:
d_H2OAE()
,
d_H2OGLRM()
,
d_ICA()
,
d_Isomap()
,
d_LLE()
,
d_MDS()
,
d_NMF()
,
d_PCA()
,
d_SPCA()
,
d_SVD()
,
d_TSNE()
,
d_UMAP()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.