d_MDS | R Documentation |
Perform MDS decomposition using stats:cmdscale
d_MDS(
x,
k = 2,
dist.method = c("euclidean", "maximum", "manhattan", "canberra", "binary", "minkowski"),
eig = FALSE,
add = FALSE,
x.ret = FALSE,
scale = TRUE,
center = TRUE,
verbose = TRUE,
...
)
x |
Input data |
k |
Integer vector of length 1 or greater. Rank of decomposition |
dist.method |
Character: method to use to calculate distance. See |
eig |
Logical: If TRUE, return eigenvalues. Default = FALSE |
add |
Logical: If TRUE, an additive constant |
x.ret |
Logical: If TRUE, return the doubly centered symmetric distance matrix. Default = FALSE |
scale |
Logical: If TRUE, scale input data before decomposition. Default = TRUE |
center |
Logical: If TRUE, also center input data if |
verbose |
Logical: If TRUE, print messages to screen. Default = TRUE |
... |
Additional parameters to be passed to |
Project scaled variables to MDS components. Input must be n by p, where n represents number of cases, and p represents number of features. fastMDS will be applied to the transpose of the n x p matrix. fastMDS will fail if there are any NA values or constant features: remove them using preprocess
rtDecom
object
E.D. Gennatas
Other Decomposition:
d_H2OAE()
,
d_H2OGLRM()
,
d_ICA()
,
d_Isomap()
,
d_KPCA()
,
d_LLE()
,
d_NMF()
,
d_PCA()
,
d_SPCA()
,
d_SVD()
,
d_TSNE()
,
d_UMAP()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.