d_SPCA | R Documentation |
Perform sparse and/or non-negative PCA or cumulative PCA decomposition
using nsprcomp::nsprcomp
or nsprcomp::nscumcomp
respectively
d_SPCA(
x,
x.test = NULL,
k = 1,
nz = floor(0.5 * NCOL(x)),
nneg = FALSE,
gamma = 0,
method = c("cumulative", "vanilla"),
scale = TRUE,
center = TRUE,
verbose = TRUE,
...
)
x |
Input matrix |
x.test |
Optional test set. Will be projected on to SPCA basis |
k |
Integer vector of length 1 or greater. N of components to return
If set to 0, |
nz |
Integer: Upper bound on non-zero loadings. See |
nneg |
Logical: If TRUE, calculate non-negative loadings only. Default = FALSE |
gamma |
Float (>0): Penalty on the divergence from otrhonormality of the pseudo-rotation matrix. Default = 0, i.e. no penalty. May need to increase with collinear features. |
method |
Character: "cumulative" or "vanilla" sparse PCA. Default = "cumulative" |
scale |
Logical: If TRUE, scale input data before projecting. Default = TRUE |
center |
Logical: If TRUE, also center input data if |
verbose |
Logical: If TRUE, print messages to screen. Default = TRUE |
... |
Additional parameters to be passed to |
Project scaled variables to sparse and/or non-negative PCA components. Input must be n by p, where n represents number of cases, and p represents number of features. SPCA will be applied to the transpose of the n x p matrix.
rtDecom
object
E.D. Gennatas
Other Decomposition:
d_H2OAE()
,
d_H2OGLRM()
,
d_ICA()
,
d_Isomap()
,
d_KPCA()
,
d_LLE()
,
d_MDS()
,
d_NMF()
,
d_PCA()
,
d_SVD()
,
d_TSNE()
,
d_UMAP()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.