factorize | R Documentation |
Perform parallel analysis, factor analysis, bifactor analysis and hierarchical clustering.
factorize(
x,
n_factors = NULL,
method = "minres",
rotation = "oblimin",
scores = "regression",
cor = "cor",
fa_n_iter = 100,
omega_method = "minres",
omega_rotation = c("oblimin", "simplimax", "promax", "cluster", "target"),
omega_n_iter = 1,
x_name = NULL,
print_plot = TRUE,
do_pa = TRUE,
do_fa = TRUE,
do_bifactor = TRUE,
do_hclust = FALSE,
verbosity = 1L,
...
)
x |
Data. Will be coerced to data frame |
n_factors |
Integer: If NULL, will be estimated using parallel analysis |
method |
Character: Factor analysis method: "minres": minimum residual (OLS), "wls": weighted least squares (WLS); "gls": generalized weighted least squares (GLS); "pa": principal factor solution; "ml": maximum likelihood; "minchi": minimize the sample size weighted chi square when treating pairwise correlations with different number of subjects per pair; "minrank": minimum rank factor analysis. |
rotation |
Character: Rotation methods. No rotation: "none"; Orthogonal: "varimax", "quartimax", "bentlerT", "equamax", "varimin", "geominT", "bifactor"; Oblique: "promax", "oblimin", "simplimax", "bentlerQ, "geominQ", "biquartimin", "cluster". |
scores |
Character: Factor score estimation method. Options: "regression", "Thurstone": simple regression, "tenBerge": correlation-preserving, "Anderson", "Barlett". |
cor |
Character: Correlation method: "cor": Pearson correlation, "cov": Covariance, "tet": tetrachoric, "poly": polychoric, "mixed": mixed cor for a mixture of tetrachorics, polychorics, Pearsons, biserials, and polyserials, "Yuleb": Yulebonett, "Yuleq" and "YuleY": Yule coefficients |
fa_n_iter |
Integer: Number of iterations for factor analysis. |
omega_method |
Character: Factor analysis method for the bifactor analysis. Same options as
|
omega_rotation |
Character: Rotation method for bifactor analysis: "oblimin", "simplimax", "promax", "cluster", "target". |
omega_n_iter |
Integer: Number of iterations for bifactor analysis. |
x_name |
Character: Name your dataset. Used for plotting |
print_plot |
Logical: If TRUE, print plots along the way. |
do_pa |
Logical: If TRUE, perform parallel analysis. |
do_fa |
Logical: If TRUE, perform factor analysis. |
do_bifactor |
Logical: If TRUE, perform bifactor analysis. |
do_hclust |
Logical: If TRUE, perform hierarchical cluster analysis. |
verbosity |
Integer: Verbosity level. |
... |
Additional arguments to pass to |
Consult psych::fa
for more information on the parameters.
List with the following elements:
Results from parallel analysis
Results from factor analysis
Factor scores
Results from bifactor analysis
Bifactor scores
Results from hierarchical cluster analysis
EDG
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.