factoryze | R Documentation |
Perform parallel analysis, factor analysis, bifactor analysis and hierarchical clustering
factoryze(
x,
n.factors = NULL,
method = "minres",
rotation = "oblimin",
scores = "regression",
cor = "cor",
fa.n.iter = 100,
omega.method = "minres",
omega.rotation = c("oblimin", "simplimax", "promax", "cluster", "target"),
omega.n.iter = 1,
x.name = NULL,
print.plot = TRUE,
do.pa = TRUE,
do.fa = TRUE,
do.bifactor = TRUE,
do.hclust = FALSE,
verbose = TRUE,
...
)
x |
Data. Will be coerced to data frame |
n.factors |
Integer: If NULL, will be estimated using parallel analysis |
method |
Character: Factor analysis method: "minres": minimum residual (OLS), "wls": weighted least squares (WLS); "gls": generalized weighted least squares (GLS); "pa": principal factor solution; "ml": maximum likelihood; "minchi": minimize the sample size weighted chi square when treating pairwise correlations with different number of subjects per pair; "minrank": minimum rank factor analysis. Default = "minres" |
rotation |
Character: Rotation methods. No rotation: "none"; Orthogonal: "varimax", "quartimax", "bentlerT", "equamax", "varimin", "geominT", "bifactor"; Oblique: "promax", "oblimin", "simplimax", "bentlerQ, "geominQ", "biquartimin", "cluster". Default = "oblimin" |
scores |
Character: Factor score estimation method. Options: "regression", "Thurstone": simple regression, "tenBerge": correlation-preserving, "Anderson", "Barlett". Default = "regression" |
cor |
Character: Correlation method: "cor": Pearson correlation, "cov": Covariance, "tet": tetrachoric, "poly": polychoric, "mixed": mixed cor for a mixture of tetrachorics, polychorics, Pearsons, biserials, and polyserials, "Yuleb": Yulebonett, "Yuleq" and "YuleY": Yule coefficients |
fa.n.iter |
Integer: Number of iterations for factor analysis. Default = 100 |
omega.method |
Character: Factor analysis method for the bifactor analysis. Same options as |
omega.rotation |
Character: Rotation method for bifactor analysis: "oblimin", "simplimax", "promax", "cluster", "target". Default = "oblimin" |
omega.n.iter |
Integer: Number of iterations for bifactor analysis. Default = 1 |
x.name |
Character: Name your dataset. Used for plotting |
print.plot |
Logical: If TRUE, print plots along the way. Default = TRUE |
do.pa |
Logical: If TRUE, perform parallel analysis. Default = TRUE |
do.fa |
Logical: If TRUE, perform factor analysis. Default = TRUE |
do.bifactor |
Logical: If TRUE, perform bifactor analysis. Default = TRUE |
do.hclust |
Logical: If TRUE, perform hierarchical cluster analysis. Default = TRUE |
verbose |
Logical: If TRUE, print messages to output. Default = TRUE |
... |
Additional arguments to pass to |
Consult psych::fa
for more information on the parameters
E.D. Gennatas
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.