s_AdaBoost | R Documentation |
Train an Adaboost Classifier using ada::ada
s_AdaBoost(
x,
y = NULL,
x.test = NULL,
y.test = NULL,
loss = "exponential",
type = "discrete",
iter = 50,
nu = 0.1,
bag.frac = 0.5,
upsample = FALSE,
downsample = FALSE,
resample.seed = NULL,
x.name = NULL,
y.name = NULL,
print.plot = FALSE,
plot.fitted = NULL,
plot.predicted = NULL,
plot.theme = rtTheme,
question = NULL,
verbose = TRUE,
trace = 0,
outdir = NULL,
save.mod = ifelse(!is.null(outdir), TRUE, FALSE),
...
)
x |
Numeric vector or matrix / data frame of features i.e. independent variables |
y |
Numeric vector of outcome, i.e. dependent variable |
x.test |
Numeric vector or matrix / data frame of testing set features
Columns must correspond to columns in |
y.test |
Numeric vector of testing set outcome |
loss |
Character: "exponential" (Default), "logistic" |
type |
Character: "discrete", "real", "gentle" |
iter |
Integer: Number of boosting iterations to perform. Default = 50 |
nu |
Float: Shrinkage parameter for boosting. Default = .1 |
bag.frac |
Float (0, 1]: Sampling fraction for out-of-bag samples |
upsample |
Logical: If TRUE, upsample cases to balance outcome classes (for Classification only) Note: upsample will randomly sample with replacement if the length of the majority class is more than double the length of the class you are upsampling, thereby introducing randomness |
downsample |
Logical: If TRUE, downsample majority class to match size of minority class |
resample.seed |
Integer: If provided, will be used to set the seed during upsampling. Default = NULL (random seed) |
x.name |
Character: Name for feature set |
y.name |
Character: Name for outcome |
print.plot |
Logical: if TRUE, produce plot using |
plot.fitted |
Logical: if TRUE, plot True (y) vs Fitted |
plot.predicted |
Logical: if TRUE, plot True (y.test) vs Predicted.
Requires |
plot.theme |
Character: "zero", "dark", "box", "darkbox" |
question |
Character: the question you are attempting to answer with this model, in plain language. |
verbose |
Logical: If TRUE, print summary to screen. |
trace |
Integer: If higher than 0, will print more information to the console. |
outdir |
Path to output directory.
If defined, will save Predicted vs. True plot, if available,
as well as full model output, if |
save.mod |
Logical: If TRUE, save all output to an RDS file in |
... |
Additional arguments |
ada::ada
does not support case weights
rtMod
object
E.D. Gennatas
train_cv for external cross-validation
Other Supervised Learning:
s_AddTree()
,
s_BART()
,
s_BRUTO()
,
s_BayesGLM()
,
s_C50()
,
s_CART()
,
s_CTree()
,
s_EVTree()
,
s_GAM()
,
s_GBM()
,
s_GLM()
,
s_GLMNET()
,
s_GLMTree()
,
s_GLS()
,
s_H2ODL()
,
s_H2OGBM()
,
s_H2ORF()
,
s_HAL()
,
s_KNN()
,
s_LDA()
,
s_LM()
,
s_LMTree()
,
s_LightCART()
,
s_LightGBM()
,
s_MARS()
,
s_MLRF()
,
s_NBayes()
,
s_NLA()
,
s_NLS()
,
s_NW()
,
s_PPR()
,
s_PolyMARS()
,
s_QDA()
,
s_QRNN()
,
s_RF()
,
s_RFSRC()
,
s_Ranger()
,
s_SDA()
,
s_SGD()
,
s_SPLS()
,
s_SVM()
,
s_TFN()
,
s_XGBoost()
,
s_XRF()
Other Tree-based methods:
s_AddTree()
,
s_BART()
,
s_C50()
,
s_CART()
,
s_CTree()
,
s_EVTree()
,
s_GBM()
,
s_GLMTree()
,
s_H2OGBM()
,
s_H2ORF()
,
s_LMTree()
,
s_LightCART()
,
s_LightGBM()
,
s_MLRF()
,
s_RF()
,
s_RFSRC()
,
s_Ranger()
,
s_XGBoost()
,
s_XRF()
Other Ensembles:
s_GBM()
,
s_RF()
,
s_Ranger()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.