s_H2ODL | R Documentation |
Trains a Deep Neural Net using H2O (http://www.h2o.ai)
Check out the H2O Flow at [ip]:[port]
, Default IP:port is "localhost:54321"
e.g. if running on localhost, point your web browser to localhost:54321
s_H2ODL(
x,
y = NULL,
x.test = NULL,
y.test = NULL,
x.valid = NULL,
y.valid = NULL,
x.name = NULL,
y.name = NULL,
ip = "localhost",
port = 54321,
n.hidden.nodes = c(20, 20),
epochs = 1000,
activation = "Rectifier",
mini.batch.size = 1,
learning.rate = 0.005,
adaptive.rate = TRUE,
rho = 0.99,
epsilon = 1e-08,
rate.annealing = 1e-06,
rate.decay = 1,
momentum.start = 0,
momentum.ramp = 1e+06,
momentum.stable = 0,
nesterov.accelerated.gradient = TRUE,
input.dropout.ratio = 0,
hidden.dropout.ratios = NULL,
l1 = 0,
l2 = 0,
max.w2 = 3.4028235e+38,
nfolds = 0,
initial.biases = NULL,
initial.weights = NULL,
loss = "Automatic",
distribution = "AUTO",
stopping.rounds = 5,
stopping.metric = "AUTO",
upsample = FALSE,
downsample = FALSE,
resample.seed = NULL,
na.action = na.fail,
n.cores = rtCores,
print.plot = FALSE,
plot.fitted = NULL,
plot.predicted = NULL,
plot.theme = rtTheme,
question = NULL,
verbose = TRUE,
trace = 0,
outdir = NULL,
save.mod = ifelse(!is.null(outdir), TRUE, FALSE),
...
)
x |
Vector / Matrix / Data Frame: Training set Predictors |
y |
Vector: Training set outcome |
x.test |
Vector / Matrix / Data Frame: Testing set Predictors |
y.test |
Vector: Testing set outcome |
x.valid |
Vector / Matrix / Data Frame: Validation set Predictors |
y.valid |
Vector: Validation set outcome |
x.name |
Character: Name for feature set |
y.name |
Character: Name for outcome |
ip |
Character: IP address of H2O server. Default = "localhost" |
port |
Integer: Port number for server. Default = 54321 |
Integer vector of length equal to the number of hidden layers you wish to create | |
epochs |
Integer: How many times to iterate through the dataset. Default = 1000 |
activation |
Character: Activation function to use: "Tanh", "TanhWithDropout", "Rectifier", "RectifierWithDropout", "Maxout", "MaxoutWithDropout". Default = "Rectifier" |
learning.rate |
Float: Learning rate to use for training. Default = .005 |
adaptive.rate |
Logical: If TRUE, use adaptive learning rate. Default = TRUE |
rate.annealing |
Float: Learning rate annealing: rate / (1 + rate_annealing * samples). Default = 1e-6 |
input.dropout.ratio |
Float (0, 1): Dropout ratio for inputs |
Vector, Float (0, 2): Dropout ratios for hidden layers | |
l1 |
Float (0, 1): L1 regularization (introduces sparseness; i.e. sets many weights to 0; reduces variance, increases generalizability) |
l2 |
Float (0, 1): L2 regularization (prevents very large absolute weights; reduces variance, increases generalizability) |
upsample |
Logical: If TRUE, upsample cases to balance outcome classes (for Classification only) Note: upsample will randomly sample with replacement if the length of the majority class is more than double the length of the class you are upsampling, thereby introducing randomness |
downsample |
Logical: If TRUE, downsample majority class to match size of minority class |
resample.seed |
Integer: If provided, will be used to set the seed during upsampling. Default = NULL (random seed) |
na.action |
How to handle missing values. See |
n.cores |
Integer: Number of cores to use |
print.plot |
Logical: if TRUE, produce plot using |
plot.fitted |
Logical: if TRUE, plot True (y) vs Fitted |
plot.predicted |
Logical: if TRUE, plot True (y.test) vs Predicted.
Requires |
plot.theme |
Character: "zero", "dark", "box", "darkbox" |
question |
Character: the question you are attempting to answer with this model, in plain language. |
verbose |
Logical: If TRUE, print summary to screen. |
trace |
Integer: If higher than 0, will print more information to the console. |
outdir |
Path to output directory.
If defined, will save Predicted vs. True plot, if available,
as well as full model output, if |
save.mod |
Logical: If TRUE, save all output to an RDS file in |
... |
Additional parameters to pass to |
x & y form the training set. x.test & y.test form the testing set used only to test model generalizability. x.valid & y.valid form the validation set used to monitor training progress
rtMod
object
E.D. Gennatas
train_cv for external cross-validation
Other Supervised Learning:
s_AdaBoost()
,
s_AddTree()
,
s_BART()
,
s_BRUTO()
,
s_BayesGLM()
,
s_C50()
,
s_CART()
,
s_CTree()
,
s_EVTree()
,
s_GAM()
,
s_GBM()
,
s_GLM()
,
s_GLMNET()
,
s_GLMTree()
,
s_GLS()
,
s_H2OGBM()
,
s_H2ORF()
,
s_HAL()
,
s_KNN()
,
s_LDA()
,
s_LM()
,
s_LMTree()
,
s_LightCART()
,
s_LightGBM()
,
s_MARS()
,
s_MLRF()
,
s_NBayes()
,
s_NLA()
,
s_NLS()
,
s_NW()
,
s_PPR()
,
s_PolyMARS()
,
s_QDA()
,
s_QRNN()
,
s_RF()
,
s_RFSRC()
,
s_Ranger()
,
s_SDA()
,
s_SGD()
,
s_SPLS()
,
s_SVM()
,
s_TFN()
,
s_XGBoost()
,
s_XRF()
Other Deep Learning:
d_H2OAE()
,
s_TFN()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.