s_Isotonic: Classification and Regression Trees [C, R, S]

View source: R/s_Isotonic.R

s_IsotonicR Documentation

Classification and Regression Trees [C, R, S]

Description

Train an isotonic regression model for regression

Usage

s_Isotonic(
  x,
  y = NULL,
  x.test = NULL,
  y.test = NULL,
  x.name = NULL,
  y.name = NULL,
  binclasspos = NULL,
  verbose = TRUE,
  question = NULL,
  outdir = NULL,
  save.mod = ifelse(!is.null(outdir), TRUE, FALSE),
  ...
)

## S3 method for class 'Isotonic'
predict(object, newdata, ...)

Arguments

x

Numeric vector or matrix / data frame of features i.e. independent variables

y

Numeric vector of outcome, i.e. dependent variable

x.test

Numeric vector or matrix / data frame of testing set features Columns must correspond to columns in x

y.test

Numeric vector of testing set outcome

x.name

Character: Name for feature set

y.name

Character: Name for outcome

verbose

Logical: If TRUE, print summary to screen.

question

Character: the question you are attempting to answer with this model, in plain language.

outdir

Path to output directory. If defined, will save Predicted vs. True plot, if available, as well as full model output, if save.mod is TRUE

save.mod

Logical: If TRUE, save all output to an RDS file in outdir save.mod is TRUE by default if an outdir is defined. If set to TRUE, and no outdir is defined, outdir defaults to paste0("./s.", mod.name)

...

Not used

object

Object of class rtMod that has been trained with s_Isotonic

newdata

Data frame of new data to predict

Value

Object of class rtMod

Predicted values

Author(s)

E.D. Gennatas

See Also

train_cv for external cross-validation calibrate_cv which uses this function

Other Supervised Learning: s_AdaBoost(), s_AddTree(), s_BART(), s_BRUTO(), s_BayesGLM(), s_C50(), s_CART(), s_CTree(), s_EVTree(), s_GAM(), s_GBM(), s_GLM(), s_GLMNET(), s_GLMTree(), s_GLS(), s_H2ODL(), s_H2OGBM(), s_H2ORF(), s_HAL(), s_KNN(), s_LDA(), s_LM(), s_LMTree(), s_LightCART(), s_LightGBM(), s_MARS(), s_MLRF(), s_NBayes(), s_NLA(), s_NLS(), s_NW(), s_PPR(), s_PolyMARS(), s_QDA(), s_QRNN(), s_RF(), s_RFSRC(), s_Ranger(), s_SDA(), s_SGD(), s_SPLS(), s_SVM(), s_TFN(), s_XGBoost(), s_XRF()


egenn/rtemis documentation built on Dec. 17, 2024, 6:16 p.m.