s_MARS | R Documentation |
Trains a MARS model using earth::earth
.
[gS] in Arguments description indicates that hyperparameter will be tuned if more than one value are provided
For more info on algorithm hyperparameters, see ?earth::earth
s_MARS(
x,
y = NULL,
x.test = NULL,
y.test = NULL,
x.name = NULL,
y.name = NULL,
grid.resample.params = setup.grid.resample(),
weights = NULL,
ifw = TRUE,
ifw.type = 2,
upsample = FALSE,
downsample = FALSE,
resample.seed = NULL,
glm = NULL,
degree = 2,
penalty = 3,
nk = NULL,
thresh = 0,
minspan = 0,
endspan = 0,
newvar.penalty = 0,
fast.k = 2,
fast.beta = 1,
linpreds = FALSE,
pmethod = "forward",
nprune = NULL,
nfold = 4,
ncross = 1,
stratify = TRUE,
wp = NULL,
na.action = na.fail,
metric = NULL,
maximize = NULL,
n.cores = rtCores,
print.plot = FALSE,
plot.fitted = NULL,
plot.predicted = NULL,
plot.theme = rtTheme,
question = NULL,
verbose = TRUE,
trace = 0,
save.mod = FALSE,
outdir = NULL,
...
)
x |
Numeric vector or matrix of features, i.e. independent variables |
y |
Numeric vector of outcome, i.e. dependent variable |
x.test |
(Optional) Numeric vector or matrix of validation set features
must have set of columns as |
y.test |
(Optional) Numeric vector of validation set outcomes |
x.name |
Character: Name for feature set |
y.name |
Character: Name for outcome |
grid.resample.params |
List: Output of setup.resample defining grid search parameters. |
weights |
Numeric vector: Weights for cases. For classification, |
ifw |
Logical: If TRUE, apply inverse frequency weighting
(for Classification only).
Note: If |
ifw.type |
Integer 0, 1, 2 1: class.weights as in 0, divided by min(class.weights) 2: class.weights as in 0, divided by max(class.weights) |
upsample |
Logical: If TRUE, upsample cases to balance outcome classes (for Classification only) Note: upsample will randomly sample with replacement if the length of the majority class is more than double the length of the class you are upsampling, thereby introducing randomness |
downsample |
Logical: If TRUE, downsample majority class to match size of minority class |
resample.seed |
Integer: If provided, will be used to set the seed during upsampling. Default = NULL (random seed) |
glm |
List of parameters to pass to glm |
degree |
[gS] Integer: Maximum degree of interaction. Default = 2 |
penalty |
[gS] Float: GCV penalty per knot. 0 penalizes only terms, not knots. -1 means no penalty. Default = 3 |
nk |
[gS] Integer: Maximum number of terms created by the forward pass.
See |
thresh |
[gS] Numeric: Forward stepping threshold. Forward pass terminates if RSq reduction is less than this. |
minspan |
Numeric: Minimum span of the basis functions. Default = 0 |
pmethod |
[gS] Character: Pruning method: "backward", "none", "exhaustive", "forward", "seqrep", "cv". Default = "forward" |
nprune |
[gS] Integer: Max N of terms (incl. intercept) in the pruned model |
na.action |
How to handle missing values. See |
metric |
Character: Metric to minimize, or maximize if
|
maximize |
Logical: If TRUE, |
n.cores |
Integer: Number of cores to use. |
print.plot |
Logical: if TRUE, produce plot using |
plot.fitted |
Logical: if TRUE, plot True (y) vs Fitted |
plot.predicted |
Logical: if TRUE, plot True (y.test) vs Predicted.
Requires |
plot.theme |
Character: "zero", "dark", "box", "darkbox" |
question |
Character: the question you are attempting to answer with this model, in plain language. |
verbose |
Logical: If TRUE, print summary to screen. |
trace |
Integer: If higher than 0, will print more information to the console. |
save.mod |
Logical: If TRUE, save all output to an RDS file in |
outdir |
Path to output directory.
If defined, will save Predicted vs. True plot, if available,
as well as full model output, if |
... |
Additional parameters to pass to |
Object of class rtMod
E.D. Gennatas
train_cv for external cross-validation
Other Supervised Learning:
s_AdaBoost()
,
s_AddTree()
,
s_BART()
,
s_BRUTO()
,
s_BayesGLM()
,
s_C50()
,
s_CART()
,
s_CTree()
,
s_EVTree()
,
s_GAM()
,
s_GBM()
,
s_GLM()
,
s_GLMNET()
,
s_GLMTree()
,
s_GLS()
,
s_H2ODL()
,
s_H2OGBM()
,
s_H2ORF()
,
s_HAL()
,
s_KNN()
,
s_LDA()
,
s_LM()
,
s_LMTree()
,
s_LightCART()
,
s_LightGBM()
,
s_MLRF()
,
s_NBayes()
,
s_NLA()
,
s_NLS()
,
s_NW()
,
s_PPR()
,
s_PolyMARS()
,
s_QDA()
,
s_QRNN()
,
s_RF()
,
s_RFSRC()
,
s_Ranger()
,
s_SDA()
,
s_SGD()
,
s_SPLS()
,
s_SVM()
,
s_TFN()
,
s_XGBoost()
,
s_XRF()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.