s_NLS: Nonlinear Least Squares (NLS) [R]

View source: R/s_NLS.R

s_NLSR Documentation

Nonlinear Least Squares (NLS) [R]

Description

Build a NLS model

Usage

s_NLS(
  x,
  y = NULL,
  x.test = NULL,
  y.test = NULL,
  formula = NULL,
  weights = NULL,
  start = NULL,
  control = nls.control(maxiter = 200),
  .type = NULL,
  default.start = 0.1,
  algorithm = "default",
  nls.trace = FALSE,
  x.name = NULL,
  y.name = NULL,
  save.func = TRUE,
  print.plot = FALSE,
  plot.fitted = NULL,
  plot.predicted = NULL,
  plot.theme = rtTheme,
  question = NULL,
  verbose = TRUE,
  verbosity = 0,
  outdir = NULL,
  save.mod = ifelse(!is.null(outdir), TRUE, FALSE),
  ...
)

Arguments

x

Numeric vector or matrix / data frame of features i.e. independent variables

y

Numeric vector of outcome, i.e. dependent variable

x.test

Numeric vector or matrix / data frame of testing set features Columns must correspond to columns in x

y.test

Numeric vector of testing set outcome

formula

Formula for the model. If NULL, a model is built with all predictors.

weights

Numeric vector: Weights for cases. For classification, weights takes precedence over ifw, therefore set weights = NULL if using ifw. Note: If weight are provided, ifw is not used. Leave NULL if setting ifw = TRUE.

start

List of starting values for the parameters in the model.

control

Control parameters for nls created by nls.control

.type

Type of model to build. If NULL, a linear model is built. If "sig", a sigmoid model is built.

default.start

Numeric: Default starting value for all parameters

algorithm

Character: Algorithm to use for nls. See nls for details.

nls.trace

Logical: If TRUE, trace information is printed during the optimization process.

x.name

Character: Name for feature set

y.name

Character: Name for outcome

save.func

Logical: If TRUE, save model as character string

print.plot

Logical: if TRUE, produce plot using mplot3 Takes precedence over plot.fitted and plot.predicted.

plot.fitted

Logical: if TRUE, plot True (y) vs Fitted

plot.predicted

Logical: if TRUE, plot True (y.test) vs Predicted. Requires x.test and y.test

plot.theme

Character: "zero", "dark", "box", "darkbox"

question

Character: the question you are attempting to answer with this model, in plain language.

verbose

Logical: If TRUE, print summary to screen.

verbosity

Integer: If > 0, print model summary

outdir

Path to output directory. If defined, will save Predicted vs. True plot, if available, as well as full model output, if save.mod is TRUE

save.mod

Logical: If TRUE, save all output to an RDS file in outdir save.mod is TRUE by default if an outdir is defined. If set to TRUE, and no outdir is defined, outdir defaults to paste0("./s.", mod.name)

...

Additional arguments to be passed to nls

Value

Object of class rtemis

Author(s)

E.D. Gennatas

See Also

train_cv for external cross-validation

Other Supervised Learning: s_AdaBoost(), s_AddTree(), s_BART(), s_BRUTO(), s_BayesGLM(), s_C50(), s_CART(), s_CTree(), s_EVTree(), s_GAM(), s_GBM(), s_GLM(), s_GLMNET(), s_GLMTree(), s_GLS(), s_H2ODL(), s_H2OGBM(), s_H2ORF(), s_HAL(), s_Isotonic(), s_KNN(), s_LDA(), s_LM(), s_LMTree(), s_LightCART(), s_LightGBM(), s_MARS(), s_MLRF(), s_NBayes(), s_NLA(), s_NW(), s_PPR(), s_PolyMARS(), s_QDA(), s_QRNN(), s_RF(), s_RFSRC(), s_Ranger(), s_SDA(), s_SGD(), s_SPLS(), s_SVM(), s_TFN(), s_XGBoost(), s_XRF()


egenn/rtemis documentation built on Dec. 17, 2024, 6:16 p.m.