s_NW: Nadaraya-Watson kernel regression [R]

View source: R/s_NW.R

s_NWR Documentation

Nadaraya-Watson kernel regression [R]

Description

Computes a kernel regression estimate using np::npreg()

Usage

s_NW(
  x,
  y = NULL,
  x.test = NULL,
  y.test = NULL,
  x.name = NULL,
  y.name = NULL,
  bw = NULL,
  plot.bw = FALSE,
  print.plot = FALSE,
  plot.fitted = NULL,
  plot.predicted = NULL,
  plot.theme = rtTheme,
  question = NULL,
  verbose = TRUE,
  trace = 0,
  outdir = NULL,
  save.mod = ifelse(!is.null(outdir), TRUE, FALSE),
  ...
)

Arguments

x

Numeric vector or matrix / data frame of features i.e. independent variables

y

Numeric vector of outcome, i.e. dependent variable

x.test

Numeric vector or matrix / data frame of testing set features Columns must correspond to columns in x

y.test

Numeric vector of testing set outcome

x.name

Character: Name for feature set

y.name

Character: Name for outcome

bw

Bandwidth as calculate by np::npregbw. Default = NULL, in which case np::npregbw will be run

plot.bw

Logical. Plot bandwidth selector results

print.plot

Logical: if TRUE, produce plot using mplot3 Takes precedence over plot.fitted and plot.predicted.

plot.fitted

Logical: if TRUE, plot True (y) vs Fitted

plot.predicted

Logical: if TRUE, plot True (y.test) vs Predicted. Requires x.test and y.test

plot.theme

Character: "zero", "dark", "box", "darkbox"

question

Character: the question you are attempting to answer with this model, in plain language.

verbose

Logical: If TRUE, print summary to screen.

trace

Integer: If higher than 0, will print more information to the console.

outdir

Path to output directory. If defined, will save Predicted vs. True plot, if available, as well as full model output, if save.mod is TRUE

save.mod

Logical: If TRUE, save all output to an RDS file in outdir save.mod is TRUE by default if an outdir is defined. If set to TRUE, and no outdir is defined, outdir defaults to paste0("./s.", mod.name)

...

Additional parameters to be passed to npreg

Details

np::npreg allows inputs with mixed data types. NW automatically models interactions, like PPR, but the latter is a lot faster

Value

Object of class rtemis

Author(s)

E.D. Gennatas

See Also

train_cv for external cross-validation

Other Supervised Learning: s_AdaBoost(), s_AddTree(), s_BART(), s_BRUTO(), s_BayesGLM(), s_C50(), s_CART(), s_CTree(), s_EVTree(), s_GAM(), s_GBM(), s_GLM(), s_GLMNET(), s_GLMTree(), s_GLS(), s_H2ODL(), s_H2OGBM(), s_H2ORF(), s_HAL(), s_Isotonic(), s_KNN(), s_LDA(), s_LM(), s_LMTree(), s_LightCART(), s_LightGBM(), s_MARS(), s_MLRF(), s_NBayes(), s_NLA(), s_NLS(), s_PPR(), s_PolyMARS(), s_QDA(), s_QRNN(), s_RF(), s_RFSRC(), s_Ranger(), s_SDA(), s_SGD(), s_SPLS(), s_SVM(), s_TFN(), s_XGBoost(), s_XRF()

Examples

## Not run: 
x <- rnorm(100)
y <- .6 * x + 12 + rnorm(100)
mod <- s_NW(x, y)

## End(Not run)

egenn/rtemis documentation built on Dec. 17, 2024, 6:16 p.m.