s_PPR | R Documentation |
Train a Projection Pursuit Regression model
s_PPR(
x,
y = NULL,
x.test = NULL,
y.test = NULL,
x.name = NULL,
y.name = NULL,
grid.resample.params = setup.grid.resample(),
gridsearch.type = c("exhaustive", "randomized"),
gridsearch.randomized.p = 0.1,
weights = NULL,
nterms = NULL,
max.terms = nterms,
optlevel = 3,
sm.method = "spline",
bass = 0,
span = 0,
df = 5,
gcvpen = 1,
metric = "MSE",
maximize = FALSE,
n.cores = rtCores,
print.plot = FALSE,
plot.fitted = NULL,
plot.predicted = NULL,
plot.theme = rtTheme,
question = NULL,
verbose = TRUE,
trace = 0,
outdir = NULL,
save.mod = ifelse(!is.null(outdir), TRUE, FALSE),
...
)
x |
Numeric vector or matrix / data frame of features i.e. independent variables |
y |
Numeric vector of outcome, i.e. dependent variable |
x.test |
Numeric vector or matrix / data frame of testing set features
Columns must correspond to columns in |
y.test |
Numeric vector of testing set outcome |
x.name |
Character: Name for feature set |
y.name |
Character: Name for outcome |
grid.resample.params |
List: Output of setup.resample defining grid search parameters. |
gridsearch.type |
Character: Type of grid search to perform: "exhaustive" or "randomized". |
gridsearch.randomized.p |
Float (0, 1): If
|
weights |
Numeric vector: Weights for cases. For classification, |
nterms |
[gS] Integer: number of terms to include in the final model |
max.terms |
Integer: maximum number of terms to consider in the model |
optlevel |
[gS] Integer [0, 3]: optimization level (Default = 3).
See Details in |
sm.method |
[gS] Character: "supsmu", "spline", or "gcvspline". Smoothing method. Default = "spline" |
bass |
[gS] Numeric [0, 10]: for |
span |
[gS] Numeric [0, 1]: for |
df |
[gS] Numeric: for |
gcvpen |
[gs] Numeric: for |
metric |
Character: Metric to minimize, or maximize if
|
maximize |
Logical: If TRUE, |
n.cores |
Integer: Number of cores to use. |
print.plot |
Logical: if TRUE, produce plot using |
plot.fitted |
Logical: if TRUE, plot True (y) vs Fitted |
plot.predicted |
Logical: if TRUE, plot True (y.test) vs Predicted.
Requires |
plot.theme |
Character: "zero", "dark", "box", "darkbox" |
question |
Character: the question you are attempting to answer with this model, in plain language. |
verbose |
Logical: If TRUE, print summary to screen. |
trace |
Integer: If greater than 0, print additional information to console |
outdir |
Path to output directory.
If defined, will save Predicted vs. True plot, if available,
as well as full model output, if |
save.mod |
Logical: If TRUE, save all output to an RDS file in |
... |
Additional arguments to be passed to |
[gS]: If more than one value is passed, parameter tuning via grid search will be performed on resamples of the training set prior to training model on full training set Interactions: PPR automatically models interactions, no need to specify them
Object of class rtMod
E.D. Gennatas
train_cv for external cross-validation
Other Supervised Learning:
s_AdaBoost()
,
s_AddTree()
,
s_BART()
,
s_BRUTO()
,
s_BayesGLM()
,
s_C50()
,
s_CART()
,
s_CTree()
,
s_EVTree()
,
s_GAM()
,
s_GBM()
,
s_GLM()
,
s_GLMNET()
,
s_GLMTree()
,
s_GLS()
,
s_H2ODL()
,
s_H2OGBM()
,
s_H2ORF()
,
s_HAL()
,
s_Isotonic()
,
s_KNN()
,
s_LDA()
,
s_LM()
,
s_LMTree()
,
s_LightCART()
,
s_LightGBM()
,
s_MARS()
,
s_MLRF()
,
s_NBayes()
,
s_NLA()
,
s_NLS()
,
s_NW()
,
s_PolyMARS()
,
s_QDA()
,
s_QRNN()
,
s_RF()
,
s_RFSRC()
,
s_Ranger()
,
s_SDA()
,
s_SGD()
,
s_SPLS()
,
s_SVM()
,
s_TFN()
,
s_XGBoost()
,
s_XRF()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.