s_QRNN: Quantile Regression Neural Network [R]

View source: R/s_QRNN.R

s_QRNNR Documentation

Quantile Regression Neural Network [R]

Description

Train an ensemble of Neural Networks to perform Quantile Regression using qrnn

Usage

s_QRNN(
  x,
  y = NULL,
  x.test = NULL,
  y.test = NULL,
  x.name = NULL,
  y.name = NULL,
  n.hidden = 1,
  tau = 0.5,
  n.ensemble = 5,
  iter.max = 5000,
  n.trials = 5,
  bag = TRUE,
  lower = -Inf,
  eps.seq = 2^(-8:-32),
  Th = qrnn::sigmoid,
  Th.prime = qrnn::sigmoid.prime,
  penalty = 0,
  print.plot = FALSE,
  plot.fitted = NULL,
  plot.predicted = NULL,
  plot.theme = rtTheme,
  question = NULL,
  verbose = TRUE,
  outdir = NULL,
  save.mod = ifelse(!is.null(outdir), TRUE, FALSE),
  ...
)

Arguments

x

Numeric vector or matrix / data frame of features i.e. independent variables

y

Numeric vector of outcome, i.e. dependent variable

x.test

Numeric vector or matrix / data frame of testing set features Columns must correspond to columns in x

y.test

Numeric vector of testing set outcome

x.name

Character: Name for feature set

y.name

Character: Name for outcome

n.hidden

Integer: Number of hidden nodes.

tau

Numeric: tau-quantile.

n.ensemble

Integer: Number of NNs to train.

iter.max

Integer: Max N of iteration of the optimization algorithm.

n.trials

Integer: N of trials. Used to avoid local minima.

bag

Logical: If TRUE, use bagging.

lower

Numeric: Left censoring point.

eps.seq

Numeric: sequence of eps values for the finite smoothing algorithm.

Th

Function: hidden layer transfer function; use qrnn::sigmoid, qrnn::elu, or qrnn::softplus for a nonlinear model and qrnn::linear for a linear model.

Th.prime

Function: derivative of hidden layer transfer function.

penalty

Numeric: weight penalty for weight decay regularization.

print.plot

Logical: if TRUE, produce plot using mplot3 Takes precedence over plot.fitted and plot.predicted.

plot.fitted

Logical: if TRUE, plot True (y) vs Fitted

plot.predicted

Logical: if TRUE, plot True (y.test) vs Predicted. Requires x.test and y.test

plot.theme

Character: "zero", "dark", "box", "darkbox"

question

Character: the question you are attempting to answer with this model, in plain language.

verbose

Logical: If TRUE, print summary to screen.

outdir

Path to output directory. If defined, will save Predicted vs. True plot, if available, as well as full model output, if save.mod is TRUE

save.mod

Logical: If TRUE, save all output to an RDS file in outdir save.mod is TRUE by default if an outdir is defined. If set to TRUE, and no outdir is defined, outdir defaults to paste0("./s.", mod.name)

...

Additional arguments to be passed to qrnn::qrnn.fit.

Details

For more details on hyperparameters, see qrnn::qrnn.fit

Author(s)

E.D. Gennatas

See Also

train_cv for external cross-validation

Other Supervised Learning: s_AdaBoost(), s_AddTree(), s_BART(), s_BRUTO(), s_BayesGLM(), s_C50(), s_CART(), s_CTree(), s_EVTree(), s_GAM(), s_GBM(), s_GLM(), s_GLMNET(), s_GLMTree(), s_GLS(), s_H2ODL(), s_H2OGBM(), s_H2ORF(), s_HAL(), s_Isotonic(), s_KNN(), s_LDA(), s_LM(), s_LMTree(), s_LightCART(), s_LightGBM(), s_MARS(), s_MLRF(), s_NBayes(), s_NLA(), s_NLS(), s_NW(), s_PPR(), s_PolyMARS(), s_QDA(), s_RF(), s_RFSRC(), s_Ranger(), s_SDA(), s_SGD(), s_SPLS(), s_SVM(), s_TFN(), s_XGBoost(), s_XRF()


egenn/rtemis documentation built on Dec. 17, 2024, 6:16 p.m.