s_SDA | R Documentation |
Train an SDA Classifier using sparseLDA::sda
s_SDA(
x,
y = NULL,
x.test = NULL,
y.test = NULL,
lambda = 1e-06,
stop = NULL,
maxIte = 100,
Q = NULL,
tol = 1e-06,
.preprocess = setup.preprocess(scale = TRUE, center = TRUE),
upsample = TRUE,
downsample = FALSE,
resample.seed = NULL,
x.name = NULL,
y.name = NULL,
grid.resample.params = setup.resample("kfold", 5),
gridsearch.type = c("exhaustive", "randomized"),
gridsearch.randomized.p = 0.1,
metric = NULL,
maximize = NULL,
print.plot = FALSE,
plot.fitted = NULL,
plot.predicted = NULL,
plot.theme = rtTheme,
question = NULL,
verbose = TRUE,
grid.verbose = verbose,
trace = 0,
outdir = NULL,
n.cores = rtCores,
save.mod = ifelse(!is.null(outdir), TRUE, FALSE)
)
x |
Numeric vector or matrix / data frame of features i.e. independent variables |
y |
Numeric vector of outcome, i.e. dependent variable |
x.test |
Numeric vector or matrix / data frame of testing set features
Columns must correspond to columns in |
y.test |
Numeric vector of testing set outcome |
lambda |
L2-norm weight for elastic net regression |
stop |
If STOP is negative, its absolute value corresponds to the desired number of variables. If STOP is positive, it corresponds to an upper bound on the L1-norm of the b coefficients. There is a one to one correspondence between stop and t. The default is -p (-the number of variables). |
maxIte |
Integer: Maximum number of iterations |
Q |
Integer: Number of components |
tol |
Numeric: Tolerance for change in RSS, which is the stopping criterion |
.preprocess |
List of preprocessing parameters. Scaling and centering is enabled by default, because it is crucial for algorithm to learn. |
upsample |
Logical: If TRUE, upsample cases to balance outcome classes (for Classification only) Note: upsample will randomly sample with replacement if the length of the majority class is more than double the length of the class you are upsampling, thereby introducing randomness |
downsample |
Logical: If TRUE, downsample majority class to match size of minority class |
resample.seed |
Integer: If provided, will be used to set the seed during upsampling. Default = NULL (random seed) |
x.name |
Character: Name for feature set |
y.name |
Character: Name for outcome |
grid.resample.params |
List: Output of setup.resample defining grid search parameters. |
gridsearch.type |
Character: Type of grid search to perform: "exhaustive" or "randomized". |
gridsearch.randomized.p |
Float (0, 1): If
|
metric |
Character: Metric to minimize, or maximize if
|
maximize |
Logical: If TRUE, |
print.plot |
Logical: if TRUE, produce plot using |
plot.fitted |
Logical: if TRUE, plot True (y) vs Fitted |
plot.predicted |
Logical: if TRUE, plot True (y.test) vs Predicted.
Requires |
plot.theme |
Character: "zero", "dark", "box", "darkbox" |
question |
Character: the question you are attempting to answer with this model, in plain language. |
verbose |
Logical: If TRUE, print summary to screen. |
grid.verbose |
Logical: Passed to |
trace |
Integer: passed to |
outdir |
Path to output directory.
If defined, will save Predicted vs. True plot, if available,
as well as full model output, if |
n.cores |
Integer: Number of cores to use. |
save.mod |
Logical: If TRUE, save all output to an RDS file in |
rtMod
object
E.D. Gennatas
train_cv for external cross-validation
Other Supervised Learning:
s_AdaBoost()
,
s_AddTree()
,
s_BART()
,
s_BRUTO()
,
s_BayesGLM()
,
s_C50()
,
s_CART()
,
s_CTree()
,
s_EVTree()
,
s_GAM()
,
s_GBM()
,
s_GLM()
,
s_GLMNET()
,
s_GLMTree()
,
s_GLS()
,
s_H2ODL()
,
s_H2OGBM()
,
s_H2ORF()
,
s_HAL()
,
s_KNN()
,
s_LDA()
,
s_LM()
,
s_LMTree()
,
s_LightCART()
,
s_LightGBM()
,
s_MARS()
,
s_MLRF()
,
s_NBayes()
,
s_NLA()
,
s_NLS()
,
s_NW()
,
s_PPR()
,
s_PolyMARS()
,
s_QDA()
,
s_QRNN()
,
s_RF()
,
s_RFSRC()
,
s_Ranger()
,
s_SGD()
,
s_SPLS()
,
s_SVM()
,
s_TFN()
,
s_XGBoost()
,
s_XRF()
## Not run:
datc2 <- iris[51:150, ]
datc2$Species <- factor(datc2$Species)
resc2 <- resample(datc2)
datc2_train <- datc2[resc2$Subsample_1, ]
datc2_test <- datc2[-resc2$Subsample_1, ]
# Without scaling or centering, fails to learn
mod_c2 <- s_SDA(datc2_train, datc2_test, .preprocess = NULL)
# Learns fine with default settings (scaling & centering)
mod_c2 <- s_SDA(datc2_train, datc2_test)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.