View source: R/01_S7_Hyperparameters.R
setup_TabNet | R Documentation |
Setup hyperparameters for TabNet training.
setup_TabNet(
batch_size = 1024^2,
penalty = 0.001,
clip_value = NULL,
loss = "auto",
epochs = 50L,
drop_last = FALSE,
decision_width = NULL,
attention_width = NULL,
num_steps = 3L,
feature_reusage = 1.3,
mask_type = "sparsemax",
virtual_batch_size = 256^2,
valid_split = 0,
learn_rate = 0.02,
optimizer = "adam",
lr_scheduler = NULL,
lr_decay = 0.1,
step_size = 30,
checkpoint_epochs = 10L,
cat_emb_dim = 1L,
num_independent = 2L,
num_shared = 2L,
num_independent_decoder = 1L,
num_shared_decoder = 1L,
momentum = 0.02,
pretraining_ratio = 0.5,
device = "auto",
importance_sample_size = NULL,
early_stopping_monitor = "auto",
early_stopping_tolerance = 0,
early_stopping_patience = 0,
num_workers = 0L,
skip_importance = FALSE,
ifw = FALSE
)
batch_size |
(Tunable) Positive integer: Batch size. |
penalty |
(Tunable) Numeric: Regularization penalty. |
clip_value |
Numeric: Clip value. |
loss |
Character: Loss function. |
epochs |
(Tunable) Positive integer: Number of epochs. |
drop_last |
Logical: If TRUE, drop last batch. |
decision_width |
(Tunable) Positive integer: Decision width. |
attention_width |
(Tunable) Positive integer: Attention width. |
num_steps |
(Tunable) Positive integer: Number of steps. |
feature_reusage |
(Tunable) Numeric: Feature reusage. |
mask_type |
Character: Mask type. |
virtual_batch_size |
(Tunable) Positive integer: Virtual batch size. |
valid_split |
Numeric: Validation split. |
learn_rate |
(Tunable) Numeric: Learning rate. |
optimizer |
Character or torch function: Optimizer. |
lr_scheduler |
Character or torch function: "step", "reduce_on_plateau". |
lr_decay |
Numeric: Learning rate decay. |
step_size |
Positive integer: Step size. |
checkpoint_epochs |
(Tunable) Positive integer: Checkpoint epochs. |
cat_emb_dim |
(Tunable) Positive integer: Categorical embedding dimension. |
num_independent |
(Tunable) Positive integer: Number of independent Gated Linear Units (GLU) at each step of the encoder. |
num_shared |
(Tunable) Positive integer: Number of shared Gated Linear Units (GLU) at each step of the encoder. |
num_independent_decoder |
(Tunable) Positive integer: Number of independent GLU layers for pretraining. |
num_shared_decoder |
(Tunable) Positive integer: Number of shared GLU layers for pretraining. |
momentum |
(Tunable) Numeric: Momentum. |
pretraining_ratio |
(Tunable) Numeric: Pretraining ratio. |
device |
Character: Device "cpu" or "cuda". |
importance_sample_size |
Positive integer: Importance sample size. |
early_stopping_monitor |
Character: Early stopping monitor. "valid_loss", "train_loss", "auto". |
early_stopping_tolerance |
Numeric: Minimum relative improvement to reset the patience counter. |
early_stopping_patience |
Positive integer: Number of epochs without improving before stopping. |
num_workers |
Positive integer: Number of subprocesses for data loacding. |
skip_importance |
Logical: If TRUE, skip importance calculation. |
ifw |
Logical: If TRUE, use Inverse Frequency Weighting in classification. |
TabNetHyperparameters object.
EDG
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.