Description Usage Arguments Details Author(s) References See Also Examples
Plot the ensemble cumulative incidence function (CIF) and cause-specific cumulative hazard function (CSCHF) from a competing risk analysis.
1 2 | ## S3 method for class 'rfsrc'
plot.competing.risk(x, plots.one.page = FALSE, ...)
|
x |
An object of class |
plots.one.page |
Should plots be placed on one page? |
... |
Further arguments passed to or from other methods. |
Ensemble ensemble CSCHF and CIF functions for each event type. Does not apply to right-censored data.
Hemant Ishwaran and Udaya B. Kogalur
Ishwaran H., Gerds T.A., Kogalur U.B., Moore R.D., Gange S.J. and Lau B.M. (2014). Random survival forests for competing risks. Biostatistics, 15(4):757-773.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | ## Not run:
## ------------------------------------------------------------
## follicular cell lymphoma
## ------------------------------------------------------------
data(follic, package = "randomForestSRC")
follic.obj <- rfsrc(Surv(time, status) ~ ., follic, nsplit = 3, ntree = 100)
plot.competing.risk(follic.obj)
## ------------------------------------------------------------
## competing risk analysis of pbc data from the survival package
## events are transplant (1) and death (2)
## ------------------------------------------------------------
if (library("survival", logical.return = TRUE)) {
data(pbc, package = "survival")
pbc$id <- NULL
plot.competing.risk(rfsrc(Surv(time, status) ~ ., pbc, nsplit = 10))
}
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.