View source: R/helpfulfunctions.R
bremla_simulationsummarizer | R Documentation |
Computes posterior marginal mean and uncertainty intervals from simulations.
bremla_simulationsummarizer(object, sync = TRUE, print.progress = FALSE)
object |
List object which is the output of function |
sync |
boolean. Set |
print.progress |
Boolean describing whether or not progress should be printed on screen. |
Returns the object
list from the input and appends additional summary statistics: posterior marginal mean and uncertainty interval-
Eirik Myrvoll-Nilsen, eirikmn91@gmail.com
bremla_chronology_simulation
if(inlaloader()){
require(stats)
set.seed(1)
n <- 1000
phi <- 0.8
sigma <- 1.2
a_lintrend <- 0.3; a_proxy = 0.8
dy_noise <- as.numeric(arima.sim(model=list(ar=c(phi)),n=n,sd=sqrt(1-phi^2)))
lintrend <- seq(from=10,to=15,length.out=n)
proxy <- as.numeric(arima.sim(model=list(ar=c(0.9)),n=n,sd=sqrt(1-0.9^2)))
dy <- a_lintrend*lintrend + a_proxy*proxy + sigma*dy_noise
y0 = 11700;z0=1200
age = y0+cumsum(dy)
depth = 1200 + 1:n*0.05
depth2 = depth^2/depth[1]^2 #normalize for stability
formula = dy~-1+depth2 + proxy
data = data.frame(age=age,dy=dy,proxy=proxy,depth=depth,depth2=depth2)
data = rbind(c(y0,NA,NA,z0,NA),data) #First row is only used to extract y0 and z0.
events=list(locations=c(1210,1220,1240))
control.fit = list(ncores=2,noise="ar1")
control.sim=list(synchronized=2,
summary=list(compute=TRUE))
object = bremla_prepare(formula,data,nsims=5000,reference.label="simulated timescale",
events = events,
control.fit=control.fit,
control.sim=control.sim)
object = bremla_modelfitter(object)
object = bremla_chronology_simulation(object)
object = bremla_simulationsummarizer(object,sync=FALSE,print.progress=TRUE)
summary(object)
plot(object)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.