library(tidyverse)
bcpss_enrollment <-
filter(marylandedu::msde_enrollment, lss_name == "Baltimore City")
usethis::use_data(bcpss_enrollment, overwrite = TRUE)
# Enrollment data (exported 2021 Feb. 22) ----
enrollment_msde_SY0919 <- list.files("inst/extdata", full.names = TRUE) |>
tibble(path = .) |>
filter(str_detect(path, "Enrollment_")) |>
mutate(data = map(
path,
~ read_csv(.x, col_types = cols(.default = "c"))
)) |>
unnest(data) |>
janitor::clean_names("snake") |>
mutate(
lea_number = coalesce(lea_number, lss_number),
lea_name = coalesce(lea_name, lss_name),
grade = coalesce(grade, grade_title)
) |>
filter(lea_name == "Baltimore City") |>
mutate(
school_number = if_else(school_number == "A", "0", school_number),
school_number = as.integer(school_number),
grade_range = case_when(
grade == "Total Enrollment" ~ "All Grades",
grade == "Elementary" ~ grade,
grade == "Middle School" ~ grade,
grade == "High School" ~ grade
),
grade = case_when(
str_detect(grade, "Grade[:space:]") ~ str_remove(grade, "Grade[:space:]"),
grade == "Prekindergarten" ~ "PK",
grade == "Kindergarten" ~ "K",
TRUE ~ "*"
)
) |>
naniar::replace_with_na_all(condition = ~ .x == "*") |>
mutate(enrolled_count = as.numeric(enrolled_count)) |>
rename(school_year = academic_year) |>
select(-c(path, lea_number, lea_name, lss_number, lss_name, grade_title, create_date))
enrollment_msde_SY0919$grade <- factor(enrollment_msde_SY0919$grade, c("PK", "K", as.character(c(1:12))))
usethis::use_data(enrollment_msde_SY0919, overwrite = TRUE)
# Student mobility data (not exported) ----
bcpss_student_mobility <- filter(marylandedu::msde_student_mobility, lss_name == "Baltimore City")
usethis::use_data(bcpss_student_mobility, overwrite = TRUE)
student_mobility_msde_SY1520 <- list.files("inst/extdata", full.names = TRUE) |>
tibble(path = .) |>
filter(str_detect(path, "Student_")) |>
mutate(data = map(
path,
~ read_csv(.x, col_types = cols(.default = "c"))
)) |>
unnest(data) |>
janitor::clean_names("snake") |>
mutate(
lea_number = coalesce(lea_number, lss_number),
lea_name = coalesce(lea_name, lss_name),
mobility_pct = coalesce(mobility_pct, mobility_rate),
mobility_cnt = coalesce(mobility_cnt, mobility_count),
entrants_pct = coalesce(entrants_pct, entrants_rate),
entrants_cnt = coalesce(entrants_cnt, entrants_count),
withdrawals_pct = coalesce(withdrawals_pct, withdrawals_rate),
withdrawals_cnt = coalesce(withdrawals_cnt, withdrawals_count),
avg_daily_member_cnt = coalesce(avg_daily_member_cnt, avg_daily_member_count)
) |>
relocate(create_date, .after = academic_year) |>
select(-c(path, lss_number, lss_name, mobility_rate:avg_daily_member_count)) |>
mutate(
across(
where(is.character),
~ case_when(
.x == "<= 5.0" ~ as.character("5.0"),
.x == ">= 95.0" ~ as.character("95.0"),
TRUE ~ .x
)
)
) |>
naniar::replace_with_na_all(condition = ~ .x == "*")
student_mobility_msde_SY1520 <- student_mobility_msde_SY1520 |>
mutate(
across(
all_of(c(8:14)),
as.numeric
)
) |>
filter(lea_name == "Baltimore City") |>
rename(school_year = academic_year) |>
select(-c(lea_number, lea_name))
student_mobility_msde_SY1520_long <- student_mobility_msde_SY1520 |>
tidyr::pivot_longer(
cols = c(8:14),
names_to = "variable",
values_to = "value"
)
# Attendance data (exported 2021 Feb. 22) ----
bcpss_attendance <-
filter(marylandedu::msde_attendance, lss_name == "Baltimore City")
usethis::use_data(bcpss_attendance, overwrite = TRUE)
attendance_msde_SY0919 <- list.files("inst/extdata", full.names = TRUE) |>
tibble(path = .) |>
filter(str_detect(path, "Attendance_")) |>
mutate(data = map(
path,
~ read_csv(.x, col_types = cols(.default = "c"))
)) |>
unnest(data) |>
janitor::clean_names("snake") |>
mutate(
lea_number = coalesce(lea_number, lss_number),
lea_name = coalesce(lea_name, lss_name)
) |>
filter(lea_name == "Baltimore City") |>
select(-c(path, lea_number, lea_name, lss_number, lss_name, create_date)) |>
rename(
school_year = academic_year,
grade_band = school_type
) |>
mutate(
school_number = if_else(school_number == "A", "0", school_number),
school_number = as.integer(school_number),
across(
where(is.character),
~ case_when(
.x == "<= 5.0" ~ as.character("5.0"),
.x == ">= 95.0" ~ as.character("95.0"),
TRUE ~ .x
)
)
) |>
naniar::replace_with_na_all(condition = ~ .x == "*") |>
mutate(
across(
all_of(c(5:15)),
as.numeric
)
)
usethis::use_data(attendance_msde_SY0919, overwrite = TRUE)
# Not exported
attendance_msde_SY1520_long <- attendance_msde_SY1520 |>
tidyr::pivot_longer(
cols = c(8:18),
names_to = "variable",
values_to = "value"
)
# Accountability data (exported 2021 July 13) ----
accountability_SY1920 <- read_csv("inst/extdata/2019_Accountability_Schools.csv", col_types = cols(.default = "c")) |>
janitor::clean_names("snake") |>
rename(
school_year = year,
lea_number = lss_number,
lea_name = lss_name
) |>
filter(lea_name == "Baltimore City") |>
naniar::replace_with_na_all(condition = ~ .x == "na") |>
mutate(
across(
all_of(c(7:10)),
as.numeric
),
across(
all_of(c(4, 6)),
as.integer
)
) |>
select(-c(lea_number, lea_name))
usethis::use_data(accountability_SY1920, overwrite = TRUE)
nces_school_directory_SY1920 <- readxl::read_excel("inst/extdata/School_Directory_2019.xlsx") |>
janitor::clean_names("snake") |>
rename(
school_year = academic_year,
grade_band = school_type
) |>
filter(
lss_name == "Baltimore City"
) |>
mutate(
school_number = as.integer(school_number)
) |>
select(-c(lss_number, lss_name, create_date))
usethis::use_data(nces_school_directory_SY1920, overwrite = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.