Description Usage Arguments Details Value Author(s) References Examples
Similar to other predict methods, this functions predicts fitted values and class labels from a fitted KERE object.
| 1 2 | 
| object | fitted  | 
| kern | the built-in kernel classes in KERE. Objects can be created by calling the rbfdot, polydot, tanhdot, vanilladot, anovadot, besseldot, laplacedot, splinedot functions etc. (see example.) | 
| x | the original design matrix for training  | 
| newx | matrix of new values for  | 
| ... | other parameters to  | 
The fitted α_0 + K * α at newx is returned as a size nrow(newx)*length(lambda) matrix for various lambda values where the KERE model was fitted.
The fitted α_0 + K * α is returned as a size nrow(newx)*length(lambda) matrix. The row represents the index for observations of newx. The column represents the index for the lambda sequence.
Yi Yang, Teng Zhang and Hui Zou
Maintainer: Yi Yang  <yi.yang6@mcgill.ca>
Y. Yang, T. Zhang, and H. Zou. (2017) "Flexible Expectile Regression in Reproducing Kernel Hilbert Space." Technometrics. Accepted.
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | # create data
N <- 100
X1 <- runif(N)
X2 <- 2*runif(N)
X3 <- 3*runif(N)
SNR <- 10 # signal-to-noise ratio
Y <- X1**1.5 + 2 * (X2**.5) + X1*X3
sigma <- sqrt(var(Y)/SNR)
Y <- Y + X2*rnorm(N,0,sigma)
X <- cbind(X1,X2,X3)
# set gaussian kernel 
kern <- rbfdot(sigma=0.1)
# define lambda sequence
lambda <- exp(seq(log(0.5),log(0.01),len=10))
# run KERE
m1 <- KERE(x=X, y=Y, kern=kern, lambda = lambda, omega = 0.5) 
# create newx for prediction
N1 <- 5
X1 <- runif(N1)
X2 <- 2*runif(N1)
X3 <- 3*runif(N1)
newx <- cbind(X1,X2,X3)
# make prediction
p1 <- predict.KERE(m1, kern, X, newx)
p1
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.