pm | R Documentation |
Compute partial moments.
pm(x, xp = 2, threshold = 0, lower = TRUE,
normalise = FALSE, na.rm = FALSE)
x |
a numeric vector or a matrix |
xp |
exponent |
threshold |
a numeric vector of length one |
lower |
logical |
normalise |
logical |
na.rm |
logical |
For a vector x
of length n
, partial
moments are computed as follows:
\mathrm{upper\ partial\ moment} = \frac{1}{n} \sum_{x >
t}\left(x - t \right)^e
\mathrm{lower\ partial\ moment} = \frac{1}{n} \sum_{x <
t}\left(t - x \right)^e
The threshold
is denoted t
, the exponent
xp
is labelled e
.
If normalise
is TRUE
, the result is raised to
1/xp
. If x
is a matrix, the function will compute the
partial moments column-wise.
See Gilli, Maringer and Schumann (2019), chapter 14.
numeric
Enrico Schumann
Gilli, M., Maringer, D. and Schumann, E. (2019) Numerical Methods and Optimization in Finance. 2nd edition. Elsevier. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1016/C2017-0-01621-X")}
Schumann, E. (2023) Financial Optimisation with R (NMOF Manual). https://enricoschumann.net/NMOF.htm#NMOFmanual
pm(x <- rnorm(100), 2)
var(x)/2
pm(x, 2, normalise = TRUE)
sqrt(var(x)/2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.