R/rgbIndices.R

Defines functions rgbIndices

Documented in rgbIndices

#' RGB indices
#'
#' @description
#' This function calculates various spectral indices from a RGB. It returns at least red green and blue as splitted channels in a stack. Additionally you can choose RGB indices.
#' \code{Raster*} object.
#'
#' @param rgb a \code{RasterStack} or \code{RasterBrick} object. 3
#' bands are mandatory (for RGB indices they should be: "red", "green" and "blue").
#' @param rgbi the implemented RGB indices currently \link{seealso}
#' @return A \code{RasterStack} object.
#' @seealso
#' A \code{RasterLayer} with the index calculates as:\cr
#' BI  sqrt((R**2+G**2+B*2)/3 Brightness Index\cr
#' CI (R-G)/(R+G) Soil Colour Index\cr
#' GLI (2*g - r - b)/(2*g + r + b) Green leaf index Vis Louhaichi et al. (2001)\cr
#' HI (2*R-G-B)/(G-B) Primary colours Hue Index\cr
#' NDTI (R-G)/(R+G) Normalized difference turbidity index Water\cr
#' NGRDI (G-R)/(G+R) Normalized green red difference index (sometimes GRVI) Tucker (1979)
#' RI R**2/(B*G**3) Redness Index\cr
#' SI (R-B)/(R+B) Spectral Slope Saturation Index\cr
#' TGI  -0.5[190(R670-R550)-120(R670 - R480)] The triangular greenness index (TGI) estimates chlorophyll concentration in leaves and canopies\cr
#' VARI (green-red)/(green+red-blue). A Visible Atmospherically Resistant Index (VARI)\cr
#' VVI  (1-(r-30)/(r+30))*(1-(g-50)/(g+50))*(1-(b-1)/(b+1))
#'
#' @import raster
#' @author
#' Chris Reudenbach
#'
#' @name rgbIndices
#' @export rgbIndices
#'
#' @references
#'
#' Planetary Habitability Laboratory (2015): Visible Vegetation Index (VVI). Available online via \url{http://phl.upr.edu/projects/visible-vegetation-index-vvi}.
#'
#' Lacaux, J. P., Tourre, Y. M., Vignolles, C., Ndione, J. A., and Lafaye, M.: Classification of ponds from high-spatial resolution remote sensing: Application to Rift Valley Fever epidemics in Senegal, Remote Sens. Environ., 106, 66-74, 2007.
#'
#' Gitelson, A., et al.: Vegetation and Soil Lines in Visible Spectral Space: A Concept and Technique for Remote Estimation of Vegetation Fraction.  International Journal of Remote Sensing 23 (2002): 2537-2562. (VARI)
#'
#' MADEIRA, J., BEDIDI, A., CERVELLE, B., POUGET, M. and FLAY, N., 1997, Visible spectrometric indices of hematite (Hm) and goethite (Gt) content in lateritic soils: 5490 N. Levin et al. the application of a Thematic Mapper (TM) image for soil-mapping in Brasilia, Brazil. International Journal of Remote Sensing, 18, pp. 2835-2852.
#'
#' MATHIEU, R., POUGET, M., CERVELLE, B. and ESCADAFAL, R., 1998, Relationships between satellite-based radiometric indices simulated using laboratory reflectance data and typic soil colour of an arid environment. Remote Sensing of Environment, 66, pp. 17-28.
#'
#' Louhaichi, M., Borman, M.M., Johnson, D.E., 2001. Spatially located platform and aerial photography for documentation of grazing impacts on wheat. Geocarto International 16, 65-70.
#'
#' Tucker, C.J., 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment 8, 127-150.
#'
#' @seealso
#' For a comprehensive overview of remote sensing indices have a look at: \url{http://www.indexdatabase.de/db/i.php}(A database for remote sensing indices)\cr
#' Wavelength ranges for overlapping digital camera bands are: red 580-670 nm, green 480-610 nm, and blue 400-520 nm (Hunt et al., 2005)
#' http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=2161&context=usdaarsfacpub
#'

rgbIndices<- function(rgb,
                      rgbi=c("VVI","VARI","NDTI","RI","CI","BI","SI","HI","TGI","GLI","NGRDI")) {

  ## compatibility check
  if (raster::nlayers(rgb) < 3)
    stop("Argument 'rgb' needs to be a Raster* object with at least 3 layers (usually red, green and blue).")

  ### processing


  ## separate visible bands
  red <- rgb[[1]]
  green <- rgb[[2]]
  blue <- rgb[[3]]

  indices <- lapply(rgbi, function(item){
    ## calculate Visible Vegetation Index vvi
    if (item=="VVI"){
      cat("\ncalculate Visible Vegetation Index (VVI)")
      VVI <- (1 - abs((red - 30) / (red + 30))) *
        (1 - abs((green - 50) / (green + 50))) *
        (1 - abs((blue - 1) / (blue + 1)))
      names(VVI) <- "VVI"
      return(VVI)

    } else if (item=="VARI"){
      # calculate Visible Atmospherically Resistant Index (VARI)
      cat("\ncalculate Visible Atmospherically Resistant Index (VARI)")
      VARI<-(green-red)/(green+red-blue)
      names(VARI) <- "VARI"
      return(VARI)

    } else if (item=="NDTI"){
      ## Normalized difference turbidity index
      cat("\ncalculate Normalized difference turbidity index (NDTI)")
      NDTI<-(red-green)/(red+green)
      names(NDTI) <- "NDTI"
      return(NDTI)

    } else if (item=="RI"){
      # redness index
      cat("\ncalculate redness index (RI)")
      RI<-red**2/(blue*green**3)
      names(RI) <- "RI"
      return(RI)

    } else if (item=="CI"){
      # CI Soil Colour Index
      cat("\ncalculate Soil Colour Index (CI)")
      CI<-(red-green)/(red+green)
      names(CI) <- "CI"
      return(CI)

    } else if (item=="BI"){
      #  Brightness Index
      cat("\ncalculate Brightness Index (BI)")
      BI<-sqrt((red**2+green**2+blue*2)/3)
      names(BI) <- "BI"
      return(BI)

    } else if (item=="SI"){
      # SI Spectra Slope Saturation Index
      cat("\ncalculate Spectra Slope Saturation Index (SI)")
      SI<-(red-blue)/(red+blue)
      names(SI) <- "SI"
      return(SI)

    } else if (item=="HI"){
      # HI Primary colours Hue Index
      cat("\ncalculate Primary colours Hue Index (HI)")
      HI<-(2*red-green-blue)/(green-blue)
      names(HI) <- "HI"
      return(HI)

    } else if (item=="TGI"){
      # Triangular greenness index
      cat("\ncalculate Triangular greenness index (TGI)")
      TGI <- -0.5*(190*(red - green)- 120*(red - blue))
      names(TGI) <- "TGI"
      return(TGI)

    } else if (item=="GLI"){
      cat("\ncalculate Green leaf index (GLI)")
      # Green leaf index
      GLI<-(2*green-red-blue)/(2*green+red+blue)
      names(GLI) <- "GLI"
      return(GLI)

    } else if (item=="NGRDI"){
      # NGRDI Normalized green red difference index
      cat("\ncalculate Normalized green red difference index  (NGRDI)")
      NGRDI<-(green-red)/(green+red)
      names(NGRDI) <- "NGRDI"
      return(NGRDI)

    }
  })
  return(raster::stack(indices))
}
envima/Rsenal2 documentation built on Oct. 16, 2020, 7:14 p.m.