Description Usage Arguments Value Author(s) See Also Examples
View source: R/stratifiedMannKendall.R
In contrast to most existing implementations, this function allows you to apply pixel-based Mann-Kendall trend tests not only to a raw 'RasterStack' of time series observations, but also to stratified subsets of the very same, i.e., across monthly (Jan-Dec) and seasonal ('DJF', 'MAM', 'JJA', 'SON') chunks of layers.
1 2 3 4 5 6 7 | stratifiedMannKendall(
x,
type = c("raw", "monthly", "seasonal"),
p = 0.001,
prewhitening = TRUE,
cores = 1L
)
|
x |
A 'RasterStack' consisting of consecutive time series observations. |
type |
'character'; one of 'raw' (take the input series as is), 'monthly' (Mann-Kendall test across unique months) and 'seasonal' (Mann-Kendall test across unique seasons). |
p |
Significance level to be tested. |
prewhitening |
'logical'. If |
cores |
Number of cores for parallel processing. |
A 'Raster*' object.
Florian Detsch
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | ## Not run:
## overall trend
overall_trend = stratifiedMannKendall(baleCHIRPS.v2, p = 1)
spplot(overall_trend)
## monthly trend
monthly_trend = stratifiedMannKendall(baleCHIRPS.v2, type = "monthly", p = 0.05)
names(monthly_trend) = month.abb
spplot(monthly_trend)
## seasonal trend
seasons_trend = stratifiedMannKendall(baleCHIRPS.v2, type = "seasonal", p = 0.05)
names(seasons_trend) = c("DJF", "MAM", "JJA", "SON")
spplot(seasons_trend)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.